Nanoscale Quantum Optics


Book Description

With the launch of the Quantum Technology Flagship Programme by the European Commission, developments in the realization of new technologies based on quantum physics have been recognized as a priority. These are important for cryptographic techniques for telecommunications security, new computing hardware that can solve problems so far inaccessible even to the latest generation of supercomputers, and precision standards and sensors with important applications ranging from materials science to medical diagnostics. This book presents a collection of lectures from the International School of Physics Enrico Fermi on Nanoscale Quantum Optics, held in Varenna, Italy, from 23 – 28 July 2018. The course was attended by 60 students, researchers and lecturers, and provided an opportunity to train a new generation of scientists on topics that promise great innovations in science and technology. Included here are 9 lectures and seminars and 3 poster contributions from the school. Subjects covered include: basic concepts for quantum optics and quantum technologies; materials for quantum nanophotonics; quantum optics and non-classical light generation; creating quantum correlations between quantum-dot spins; platforms for telecom-entangled photon sources; nanoscale sensing and quantum coherence; and nano-optomechanics, among others. The book offers a valuable overview of the state-of-the-art and current trends in nanoscale quantum optics. It will be invaluable for all those with an interest in this subject.




Recent Developments in Quantum Optics


Book Description

This volume is composed of papers (invited and contributed) presented at the International Conference on Coherence and Quantum Optics held at the University of Hyderabad January 5-January 10, 1991. It has been organized by Professor Girish Agarwal and his colleagues at the School of Physics, University of Hyderabad, Hyder abad, India under partial support from the Department of Science and Technology, Government of India, International Center for Theoretical Physics, Trieste, Italy and the National Science Foundation, USA. Without the untiring efforts of Prof. Girish Agarwal and the members of his quantum office group, the Conference and the present volume would not have been possible. Some extraordinary circumstances resulted in a delay of the publication of the present volume. Our sincere apologies to all the authors. We deeply regret the inconvenience caused due to the delay. A debt of gratitude is due to Ms. Kim Bella for the excellent typing job of the different versions and the final version of the manuscript. It is a pleasure to acknowl edge the efforts of Ms. Pat Vann, Mr. Greg Safford and Mr. Eric Katz of the Plenum Publishing, without whose interest and persistence this volume would not have been possible. v CONTENTS QUANTUM OPTICS: THEORY The Quantum Mechanics of Particles in Time-Dependent Quadrupole Fields Roy J. Glauber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Localization of Photons in Random and Quasiperiodic Media S. Dutta Gupta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Enhanced Fundamental Linewidth of a Laser Due to Outcoupling W. A. Hamel, M. P. van Exter, and J. P. Woerdman . . . . . . . . . . . . . . . . . . . . . . . .




An Introduction to Quantum Optics


Book Description

Authored by a highly regarded international researcher and pioneer in the field, An Introduction to Quantum Optics: Photon and Biphoton Physics is a straightforward overview of basic principles and experimental evidence for the quantum theory of light. This book introduces and analyzes some of the most exciting experimental research to date in the field of quantum optics and quantum information, helping readers understand the revolutionary changes occurring in optical science. Paints a picture of light in terms of general quantum interference, to reflect the physical truth behind all optical observations Unlike most traditional books on the subject, this one introduces fundamental classical and quantum concepts and measurement techniques naturally and gradually as it explores the process of analyzing typical experimental observations. Separating itself from other books with this uncommon focus on the experimental part of analysis, this volume: Provides a general overview of the optical coherence of light without quantization Introduces concepts and tools of field quantization and quantum optics based on the principles and rules of quantum mechanics Analyzes similarities and differences between classical and quantum coherence Concentrates on key research topics in quantum optics Explains photon and biphoton physics by examining the devices and experimental procedures used to test theories This book is basic enough for students, but it also covers a broad range of higher-level concepts that will benefit scientists and other professionals seeking to enhance their understanding of practical and theoretical aspects and new experimental methods of measurement. This material summarizes exciting developments and observations and then helps readers of all levels apply presented concepts and tools to summarize, analyze, and resolve quantum optical problems in their own work. It is a great aid to improve methods of discovering new physics and better understand and apply nontraditional concepts and interpretations in both new and historical experimental discoveries.




Coherent Nonlinear Optics


Book Description




Quantum Nonlinear Optics


Book Description

This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, and mutual manipulation of light and matter. It also covers laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. In addition, latest results of the frontier of this science are presented. Problems and solutions help the reader to master and review the material.




Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures


Book Description

The fundamental concept of quantum coherence plays a central role in quantum physics, cutting across disciplines of quantum optics, atomic and condensed matter physics. Quantum coherence represents a universal property of the quantum s- tems that applies both to light and matter thereby tying together materials and p- nomena. Moreover, the optical coherence can be transferred to the medium through the light-matter interactions. Since the early days of quantum mechanics there has been a desire to control dynamics of quantum systems. The generation and c- trol of quantum coherence in matter by optical means, in particular, represents a viable way to achieve this longstanding goal and semiconductor nanostructures are the most promising candidates for controllable quantum systems. Optical generation and control of coherent light-matter states in semiconductor quantum nanostructures is precisely the scope of the present book. Recently, there has been a great deal of interest in the subject of quantum coh- ence. We are currently witnessing parallel growth of activities in different physical systems that are all built around the central concept of manipulation of quantum coherence. The burgeoning activities in solid-state systems, and semiconductors in particular, have been strongly driven by the unprecedented control of coherence that previously has been demonstrated in quantum optics of atoms and molecules, and is now taking advantage of the remarkable advances in semiconductor fabrication technologies. A recent impetus to exploit the coherent quantum phenomena comes from the emergence of the quantum information paradigm.




Quantum Dynamics And Information - Proceedings Of The 46th Karpacz Winter School Of Theoretical Physics


Book Description

The central theme of this lecture collection is quantum dynamics, regarded mostly as the dynamics of entanglement and that of decoherence phenomena. Both these concepts appear to refer to the behavior of surprisingly fragile features of quantum systems supposed to model quantum memories and to implement quantum date processing routines. This collection may serve as an essential resource for those interested in both theoretical description and practical applications of fundamentals of quantum mechanics.




New Trends in Quantum Electrodynamics


Book Description

This book collects research and review articles covering some recent trends in nonrelativistic quantum electrodynamics, specifically the interaction of atoms or molecules within the quantum electromagnetic radiation field and the related physical effects. Specific topics covered are: two- and three-body dispersion interactions between atoms and molecules, both in the nonretarded van der Waals and the retarded Casimir–Polder regime; vacuum field fluctuations of the electromagnetic field and their effect in atomic systems; dispersion interactions between uniformly accelerating atoms and relation with the Fulling–Davies–Unruh effect; dynamics of atomic systems under strong electromagnetic fields; symmetries in quantum electrodynamics; and open quantum systems.




The Current Trends of Optics and Photonics


Book Description

Optics and photonics offer new and vibrant approaches to meeting the challenges of the 21st century concerning energy conservation, education, agriculture, personal health and the environment. One of the most effective ways to address these global problems is to provide updated and reliable content on light-based technologies. Optical thin films and meta-materials, lasers, optical communications, light-emitting diodes, solar cells, liquid crystal technology, nanophotonics and biophotonics all play vital roles in enriching our lives. We hope to raise readers’ awareness of how optical technologies are now promoting sustainable development and providing reliable solutions to basic human needs. Furthermore, in order to broaden new research fields, we hope to inspire them to pursue further cutting-edge breakthroughs on the basis of the accomplishments that have already been made.