Nitrogen in Agriculture


Book Description

Nitrogen is the most yield-restraining nutrient in crop production globally. Efficient nitrogen management is one of the most important factor for improving nitrogen use efficiency, field crops productivity and profitability. Efficient use of nitrogen for crop production is therefore very important for increasing grain yield, maximizing economic return and minimizing nitrous oxide (N2O) emission from the fields and nitrate (NO3) leaching to ground water. Integrated nitrogen management is a good strategy to improve plant growth, increase yield and yield components, grain quality and reduce environmental problems. Integrated nitrogen management (combined use of chemical + organic + bio-fertilizers) in field crop production is more resilient to climate change.




Nitrogen Fixation in Tropical Cropping Systems


Book Description

Nitrogen fixation by leguminous plants is especially important when farmers are trying to minimise fertilizer use for cost or environmental reasons. This second edition of the highly successful book, first published in 1991, contains thoroughly updated and revised material on the theory and practice of nitrogen fixation in tropical cropping systems.




Nitrogen Fixation in Crop Production


Book Description

This book presents the science, application, and politics of the use of nitrogen-fixing crop plants across the globe in various environments. Nitrogen fixation can help provide a growing population with a nutritious, environmentally friendly, sustainable food supply. From new "omics" approaches to the role of nitrogen fixation in mitigating greenhouse gas emissions, from farming strategies in nonindustrialized nations to nitrogen fixation in the global economy, scientists will find the key issues and expanding research areas, and how they contribute to the next wave of advancements related to agriculture and the environment




Symbiotic Nitrogen Fixation


Book Description

During the past three decades there has been a large amount of research on biological nitrogen fixation, in part stimulated by increasing world prices of nitrogen-containing fertilizers and environmental concerns. In the last several years, research on plant--microbe interactions, and symbiotic and asymbiotic nitrogen fixation has become truly interdisciplinary in nature, stimulated to some degree by the use of modern genetic techniques. These methodologies have allowed us to make detailed analyses of plant and bacterial genes involved in symbiotic processes and to follow the growth and persistence of the root-nodule bacteria and free-living nitrogen-fixing bacteria in soils. Through the efforts of a large number of researchers we now have a better understanding of the ecology of rhizobia, environmental parameters affecting the infection and nodulation process, the nature of specificity, the biochemistry of host plants and microsymbionts, and chemical signalling between symbiotic partners. This volume gives a summary of current research efforts and knowledge in the field of biological nitrogen fixation. Since the research field is diverse in nature, this book presents a collection of papers in the major research area of physiology and metabolism, genetics, evolution, taxonomy, ecology, and international programs.




Biological Nitrogen Fixation for Sustainable Agriculture


Book Description

Chemical fertilizers have had a significant impact on food production in the recent past, and are today an indispensable part of modern agriculture. On the other hand, the oil crisis of the 1970s and the current Middle East problems are constant reminders of the vulnerability of our fossil fuel dependent agriculture. There are vast areas of the developing world where N fertilizers are neither available nor affordable and, in most of these countries, balance of payment problems have resulted in the removal of N fertilizer subsidies. The external costs of environmental degradation and human health far exceed economic concerns. Input efficiency of N fertilizer is one of the lowest and, in turn, contributes substantially to environmental pollution. Nitrate in ground and surface waters and the threat to the stability of the ozone layer from gaseous oxides of nitrogen are major health and environmental concerns. The removal of large quantities of crop produce from the land also depletes soil of its native N reserves. Another concern is the decline in crop yields under continuous use of N fertilizers. These economic, environmental and production considerations dictate that biological alternatives which can augment, and in some cases replace, N fertilizers must be exploited. Long-term sustainability of agricultural systems must rely on the use and effective management of internal resources. The process of biological nitrogen fixation offers and economically attractive and ecologically sound means of reducing external nitrogen input and improving the quality and quantity of internal resources. In this book, we outline sustainability issues that dictate an increased use of biological nitrogen fixation and the constraints on its optimal use in agriculture.




Measuring Plant-associated Nitrogen Fixation in Agricultural Systems


Book Description

Biological nitrogen fixation. Why, when an how to measure nitrogen fixation. Analysis of nitrogen. Nitrogen Balance Method. Nitrogen Difference method. Ureide (N solute) metode. N-isotopic methods. N-abundance method. N isotopic ditution method. prcaution whenquantifying N2 fixation associated with no-nodulatin plants (associative N2 fixation). Assays of nitrogenase activity.




Properties and Management of Soils in the Tropics


Book Description

Long-awaited second edition of classic textbook, brought completely up to date, for courses on tropical soils, and reference for scientists and professionals.




Biological Nitrogen Fixation and Sustainability of Tropical Agriculture


Book Description

Biological nitrogen fixation in tropical agrosystems: twenty years of biological nitrogen fixation research in Africa; Sustainable agriculture: definition and measurement; Biological nitrogen fixation systems in tropical ecosystems: an overview; A protocol for screening legumes as soil-improving crops; The sustenance of tropical agriculture with multipurpose azolla; Facteurs pedoclimatiques limitant la lixation biologique l'azole; Response of some tropical nitrogen-fixing woody legumes to drought and inoculation with mycorrhiza; Improvement to the Phaseolus/Rhizobium symbiosis, with particular reference to the Caribbean region; Effect of pest management systems on biological nitrogen fixation; Agronomic evaluation of a rock phosphate as a phosphorus source for Leucaena leucocephala grown on an utisol; Nodulation of soybean grown under field conditions and inoculated with Bradyrhizobium japonicum strains; Effect of fertilization and Rhizobium inoculation on the growth of Leucaena and Gliricidia on an alfisol in south-western Nigeria; Early growth and nodulation in Leucaena and Gliricidia and the effects or pruning on biomass productivity; Comparative stude on the growth and productivity of Sesbania and Leucaena in the Central Plateau region, Rwanda; Supernoculation and non-nodulation mutants of soybean; Genetically improved rhizobia and their use in agriculture; Sustainability of nitrogen-fixing cropping systems: Nodulation and nitrogen fixation and transfer in a cowpea/rice cropping system; The role of legumes in sustaiing soil productivity and controlling soil erosion; Fitting soil-improving legumes into inland valley rice-baes cropping systems in West Africa; Herbage yield and soil fertility restoration potential of some tropical forage legumes.




Advances in Biology and Ecology of Nitrogen Fixation


Book Description

Biological nitrogen fixation has essential role in N cycle in global ecosystem. Several types of nitrogen fixing bacteria are recognized: the free-living bacteria in soil or water; symbiotic bacteria making root nodules in legumes or non-legumes; associative nitrogen fixing bacteria that resides outside the plant roots and provides fixed nitrogen to the plants; endophytic nitrogen fixing bacteria living in the roots, stems and leaves of plants. In this book there are 11 chapters related to biological nitrogen fixation, regulation of legume-rhizobium symbiosis, and agriculture and ecology of biological nitrogen fixation, including new models for autoregulation of nodulation in legumes, endophytic nitrogen fixation in sugarcane or forest trees, etc. Hopefully, this book will contribute to biological, ecological, and agricultural sciences.




Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment


Book Description

Sustainability has a major part to play in the global challenge of continued development of regions, countries, and continents all around the World and biological nitrogen fixation has a key role in this process. This volume begins with chapters specifically addressing crops of major global importance, such as soybeans, rice, and sugar cane. It continues with a second important focus, agroforestry, and describes the use and promise of both legume trees with their rhizobial symbionts and other nitrogen-fixing trees with their actinorhizal colonization. An over-arching theme of all chapters is the interaction of the plants and trees with microbes and this theme allows other aspects of soil microbiology, such as interactions with arbuscular mycorrhizal fungi and the impact of soil-stress factors on biological nitrogen fixation, to be addressed. Furthermore, a link to basic science occurs through the inclusion of chapters describing the biogeochemically important nitrogen cycle and its key relationships among nitrogen fixation, nitrification, and denitrification. The volume then provides an up-to-date view of the production of microbial inocula, especially those for legume crops.