Soil Emission of Nitrous Oxide and its Mitigation


Book Description

Nitrous oxide gas is a long-lived relatively active greenhouse gas (GHG) with an atmospheric lifetime of approximately 120 years, and heat trapping effects about 310 times more powerful than carbon dioxide per molecule basis. It contributes about 6% of observed global warming. Nitrous oxide is not only a potent GHG, but it also plays a significant role in the depletion of stratospheric ozone. This book describes the anthropogenic sources of N2O with major emphasis on agricultural activities. It summarizes an overview of global cycling of N and the role of nitrous oxide on global warming and ozone depletion, and then focus on major source, soil borne nitrous oxide emissions. The spatial-temporal variation of soil nitrous oxide fluxes and underlying biogeochemical processes are described, as well as approaches to quantify fluxes of N2O from soils. Mitigation strategies to reduce the emissions, especially from agricultural soils, and fertilizer nitrogen sources are described in detail in the latter part of the book.




Nitrogen Transformations Associated with N2O Emissions in Agricultural Soils


Book Description

Nitrogen (N) is one of the most important plant nutrient, and its availability and transformations are vital for net primary production. Soil N transformations include mineralization, nitrification and denitrification processes. Nitrogen mineralization transforms organic N into inorganic N, providing available N for crops. Both nitrification and denitrification are microbe-driven processes associated with nitrous oxide (N2O) emissions. N2O emissions from agricultural soils decrease N fertilization efficiency and potentially induce global warming. The mitigation of soil N2O emissions in agricultural practice is essential for sustainable development of agriculture considering the environmental effect of N2O. Various strategies have been proposed for the mitigation of N2O emissions. Nitrification inhibitors have been demonstrated to be useful in decreasing soil N2O emissions, including the application of nitrification inhibitors, such as dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP). Recently, biological nitrification inhibitors have also attracted researchers' attention, which may be more environment-friendly. In addition, biochar commonly used as soil ameliorant to improve soil quality and C sequestration could also mitigate soil N2O emissions. Once all effective strategies would be widely implemented, more environment-friendly agriculture could be expected.




Nitrogen in the Environment: Sources, Problems and Management


Book Description

Nitrogen in the Environment: Sources, Problems, and Management is the first volume to provide a holistic perspective and comprehensive treatment of nitrogen from field, to ecosystem, to treatment of urban and rural drinking water supplies, while also including a historical overview, human health impacts and policy considerations. It provides a worldwide perspective on nitrogen and agriculture. Nitrogen is one of the most critical elements required in agricultural systems for the production of crops for feed, food and fiber. The ever-increasing world population requires increasing use of nitrogen in agriculture to supply human needs for dietary protein. Worldwide demand for nitrogen will increase as a direct response to increasing population. Strategies and perspectives are considered to improve nitrogen-use efficiency. Issues of nitrogen in crop and human nutrition, and transport and transformations along the continuum from farm field to ground water, watersheds, streams, rivers, and coastal marine environments are discussed. Described are aerial transport of nitrogen from livestock and agricultural systems and the potential for deposition and impacts. The current status of nitrogen in the environment in selected terrestrial and coastal environments and crop and forest ecosystems and development of emerging technologies to minimize nitrogen impacts on the environment are addressed. The nitrogen cycle provides a framework for assessing broad scale or even global strategies to improve nitrogen use efficiency. Growing human populations are the driving force that requires increased nitrogen inputs. These increasing inputs into the food-production system directly result in increased livestock and human-excretory nitrogen contribution into the environment. The scope of this book is diverse, covering a range of topics and issues from furthering our understanding of nitrogen in the environment to policy considerations at both farm and national scales.







Microbial Biotechnology


Book Description

This edited book, is a collection of 20 articles describing the recent advancements in the application of microbial technology for sustainable development of agriculture and environment. This book covers many aspects like agricultural nanotechnology, promising applications of biofuels production by algae, advancements and application of microbial keratinase, biocontrol agents, plant growth promoting rhizobacteria, bacterial siderophore, use of microbes in detoxifying organophosphate pesticides, bio-surfactants, biofilms, bioremediation degradation of phenol and phenolic compounds and bioprospecting of endophytes. This book intends to bring the latest research advancements and technologies in the area of microbial technology in one platform, providing the readers an up-to-date view on the area. This book would serve as an excellent reference book for researchers and students in the agricultural, environmental and microbiology fields.




Mitigating Gaseous Nitrogen and Carbon Losses From Northeastern Agricultural Soils Via Alternative Soil Management Practices


Book Description

Traditional agricultural practices often result in gaseous losses of nitrous oxide (N2O), ammonia (NH3), and carbon dioxide (CO2), representing a net loss of nutrients from agricultural soils, which negatively impacts crop yield and requires farmers to increase nutrient inputs. By adopting best management practices (BMPs; i.e., no-tillage, cover crops, sub-surface manure application, and proper manure application timing), there is great potential to reduce these losses. Because N2O and CO2 are also greenhouse gases (GHGs), climate change mitigation via BMP adoption and emissions reductions would be an important co-benefit. However, adopting a no-tillage and cover cropping system has had setbacks within the Northeast, primarily due to concerns regarding manure nitrogen (N) losses in no-tillage systems as well as uncertainty surrounding the benefits of cover crops. This thesis used two field-trials located in Alburgh, Vermont to assess differences in (i) GHG emissions from agricultural soils, (ii) nitrate and ammonium retention, (iii) corn yield and protein content, and (iv) N uptake and retention via cover crop scavenging under a combination of different BMPs. Chapter 1 evaluates the effects of different reduced-tillage practices and manure application methods (i.e., vertical-tillage, no-tillage, manure injection, and broadcast manure application) on reducing N2O and CO2 emissions, retaining inorganic N, and improving crop yields. Greenhouse gas measurements were collected every other week for the growing season of 2015-2017 via static chamber method using a photoacoustic gas analyzer. Results from this study showed that tillage regimes and manure application method did not interact to affect any of the three research objectives, although differences between individual BMPs were observed. Notably, vertical tillage enhanced CO2 emissions relative to no-tillage, demonstrating the role of soil disturbance and aeration on aerobic microbial C transformations. Manure injection was found to significantly enhance both N2O and CO2 emission relative to broadcast application, likely due to the formation of anerobic micro-zones created from liquid manure injection. However, plots that received manure injection retained greater concentrations of soil nitrate, a vital nutrient for quality crop production, thereby highlighting a major tradeoff between gaseous N losses and N retention with manure injection. Chapter 2 evaluates the effects of tillage practices and timing of manure application to increase N retention with the use of cover crops in order to mitigate GHG emissions, enhance soil nitrate and ammonium retention, and improve cropping system N uptake. Treatments at this field trial consisted of a combination of the presence or absence of cover crops, no-tillage or conventional-tillage, and spring or fall manure application. Greenhouse gas emissions were measured every other week via static chamber method using a gas chromatograph for the growing season of 2018. Results from this study showed that the presence of cover crops enhanced both N2O and CO2 emissions relative to fallow land, irrespective of tillage regime and manure application season, likely as a result of greater N and carbon substrates entering the soil upon cover crop decomposition. Due to enhanced N2O emissions with cover crops, cover crops did not retain significantly greater inorganic N in the system upon termination.




Gaseous Loss of Nitrogen from Plant-Soil Systems


Book Description

A growing interest has been shown recently in the dymanics of nitrogen in agricultural and natural ecosystems. This has been caused by increasing demands for food and fibre by a rapidly expanding world population, and by a growing concern that increased land clearing, cultivation and use of both fertilizer and biologically fixed nitrogen can have detrimental effects on the environment. These include effects on water quality, eutrophication of surface waters and changes in atmospheric composition all caused by increased cycling of nitrogenous compounds. The input and availability of nitrogen frequently affects the productivity of farming systems more than any other single management factor, but often the nitrogen is used inefficiently. Much of the fertilizer nitrogen applied to the soil is not utilised by the crop: it is lost either in solution form, by leaching of nitrate, or in gaseous forms as ammonia, nitrous oxide, nitric oxide or dinitrogen. The leached nitrate can contaminate rivers and ground waters, while the emitted ammonia can contaminate surface waters or combine with atmospheric sulfur dioxide to form aerosols which affect visibility, health and climate. There is also concern that increased evolution of nitrous oxide will deplete the protective ozone layer of the stratosphere. The possibility of a link between the intensity of agricultural use of nitrogen, nitrous oxide emissions and amounts of stratospheric ozone has focussed attention on these interactions.




Methane Emissions from Major Rice Ecosystems in Asia


Book Description

Rice production is affected by changing climate conditions and has the dual role of contributing to global warming through emissions of the greenhouse gas methane. Climate change has been recognized as a major threat to the global environment. Because of insufficient field data, rice-growing countries face a problem when trying to comply with the United Nations Framework Convention on Climate Change stipulations to compile a national inventory of emissions and to explore mitigation options. Given the expected doubling in rice production in Asia, the need to evaluate the interaction between climate change and rice production is critical to forming a sound basis for future directions of technology developments by policy makers, agriculturists, environmentalists, rice producers, and rice consumers. The present book comprises two sections. The first part documents a comprehensive overview of the results achieved from an interregional research effort to quantify methane emission from major rice ecosystems and to identify efficient mitigation options. This research report broadens understanding of the contribution of rice cultivation to methane emissions and clarifies that emissions are relatively low, except in specific rice ecosystems, and that these high emissions could be ameliorated without sacrificing yield. The second section shows results from other projects that investigated the role of rice cultivators in field and laboratory approaches. The findings represent inputs for future modeling approaches in the role of rice cultivators. The expanded database generated by other projects is reflected in modeling efforts.




Soil Nitrous Oxide Emissions from Agriculture in a Changing Global Environment


Book Description

Agricultural soils encompass one of the major sources of anthropogenic nitrous oxide (N2O), a potent greenhouse gas and stratospheric ozone depleting substance. Therefore, accurate prediction of N2O emissions from soils and development of effective mitigation strategies are pertinent. However, the scientific understanding of mechanisms underlying N2O emissions is limited, in part, by the lack of suitable methods to assess sources of N2O, especially under field conditions and in undisturbed soil cores. In this dissertation, two ecological applications of source-partitioning N2O were considered: (1) the feedback of N2O emissions to elevated atmospheric CO2 and tropospheric O3 and (2) mechanisms underlying N2O emissions during a simulated rainfall event in a tomato cropping system in California. Furthermore, four methods were evaluated for their utility in source-partitioning N2O with minimal disturbance of the system: (1) tracing of added 15N enriched NH4 and/or NO3− to N2O, (2) use of natural abundance 15N of N2O and its precursors, (3) measuring the intramolecular distribution of 15N in N2O, expressed as site preference (SP), and (4) determining relationships between natural abundance 18O and 15N. Method comparisons elucidated that the use of isotope models that include all natural abundance isotopes of N2O and its precursors and uncertainty deductions for isotope fractionation factors to estimate N transformation rates and sources of N2O during peak N2O emissions is the most promising approach to improve our understanding of mechanisms underlying N2O emissions with minimal sampling-associated disturbance of the system. Various approaches to study sources of N2O and N-cycling suggested that elevated CO2 and O3 will unlikely cause a feedback on global climate change through altered N2O emissions in soybean agroecosystems in the Midwestern USA. Furthermore, elevated CO2 decelerated, whereas elevated O3 accelerated N-cycling if integrated over longer time scales. In a California tomato cropping system, N2O reduction to N2 decreased progressively as soil dried out following wetting up. Overall, this dissertation illustrates the added benefit of studying mechanisms underlying N2O emissions in addition to field N2O fluxes per se and encourages further research to source-partition N2O emissions and its needed methodology to understand N2O responses of agroecosystems in a changing global environment.