Biodiversity In Agricultural Production Systems


Book Description

While modern science has always recognized the central role that biodiversity plays in the ecological processes that maintain the Earth's equilibrium, our increasing knowledge of nature has deepened our appreciation of this principle. Consequently, those involved with implementing and maintaining sustainable agriculture systems have begun to take a far more sophisticated approach to understanding and making use of the components and mechanics of biodiversity. Providing a comprehensive and highly practical exploration of the subject, Biodiversity in Agricultural Production Systems examines abiotic ecosystem diversity and biological complexity at every relevant level. Leading researchers detail subspecies diversity, covering ecotypes, lifecycles, genes, physiology, and behavior. They also discuss species richness and supraspecies diversity, which includes foodweb interactions and non-trophic relationships, as well as above- and belowground relationships. Exploring various facets of agricultural crops and cultivation practices, this inter-disciplinary volume- Gives an overview of the pore space dynamic in agroecosystems where most soil microorganisms reside, including bacteria, fungi, protozoa, nematodes, and Tardigrada Examines the highly diverse and prominent role played by earthworms Looks at the metabolic processes occurring in soils that result in the release of greenhouse gases Outlines principles and strategies of order between interacting molecules, cells, species and communities Looks at mechanisms of competition, exploring growth regulation, transformation, and feeding strategies, as well as toxin production, mutation, and biofilm formation Discusses matter recycling and the diversity of microbial metabolism in soils Shows how long-term observation plots are used to assess soil quality Biodiversity in Agricultural Production Systems provides important information for those involved with researching and implementing sustainable agricultural systems, as well as those addressing specific challenges related to soil degradation, water management, and climatic impacts. It also provides recent research and fresh perspectives to enhance the approaches of those working in horticulture, biology, and the environmental sciences.







Soil Emission of Nitrous Oxide and its Mitigation


Book Description

Nitrous oxide gas is a long-lived relatively active greenhouse gas (GHG) with an atmospheric lifetime of approximately 120 years, and heat trapping effects about 310 times more powerful than carbon dioxide per molecule basis. It contributes about 6% of observed global warming. Nitrous oxide is not only a potent GHG, but it also plays a significant role in the depletion of stratospheric ozone. This book describes the anthropogenic sources of N2O with major emphasis on agricultural activities. It summarizes an overview of global cycling of N and the role of nitrous oxide on global warming and ozone depletion, and then focus on major source, soil borne nitrous oxide emissions. The spatial-temporal variation of soil nitrous oxide fluxes and underlying biogeochemical processes are described, as well as approaches to quantify fluxes of N2O from soils. Mitigation strategies to reduce the emissions, especially from agricultural soils, and fertilizer nitrogen sources are described in detail in the latter part of the book.




Acid Precipitation


Book Description







The Ecology of Agricultural Landscapes


Book Description

Evidence has been mounting for some time that intensive row-crop agriculture as practiced in developed countries may not be environmentally sustainable, with concerns increasingly being raised about climate change, implications for water quantity and quality, and soil degradation. This volume synthesizes two decades of research on the sustainability of temperate, row-crop ecosystems of the Midwestern United States. The overarching hypothesis guiding this work has been that more biologically based management practices could greatly reduce negative impacts while maintaining sufficient productivity to meet demands for food, fiber and fuel, but that roadblocks to their adoption persist because we lack a comprehensive understanding of their benefits and drawbacks. The research behind this book, based at the Kellogg Biological Station (Michigan State University) and conducted under the aegis of the Long-term Ecological Research network, is structured on a foundation of large-scale field experiments that explore alternatives to conventional, chemical-intensive agriculture. Studies have explored the biophysical underpinnings of crop productivity, the interactions of crop ecosystems with the hydrology and biodiversity of the broader landscapes in which they lie, farmers' views about alternative practices, economic valuation of ecosystem services, and global impacts such as greenhouse gas exchanges with the atmosphere. In contrast to most research projects, the long-term design of this research enables identification of slow or delayed processes of change in response to management regimes, and allows examination of responses across a broader range of climatic variability. This volume synthesizes this comprehensive inquiry into the ecology of alternative cropping systems, identifying future steps needed on the path to sustainability.




Nitrogen Economy in Tropical Soils


Book Description

Nitrogen Economy in Tropical Soils presents an authoritative and comprehensive state-of-the-art review on soil/plant nitrogen inter-relationships, with special reference to tropical soils and crops in aerobic and anaerobic environments. Use of isotopically labelled nitrogen in experimentation, especially in tropical environments, and recently developed analytical techniques for soil and plant materials are presented. An important aspect is the emphasis placed on the impact of the tropical environment on nitrogen transformations in the soil environment. This book should be an excellent source of information for senior undergraduate and graduate students with interest in soil/plant nitrogen inter-relationships, and for all levels of research workers in these fields.







Managing Soils and Terrestrial Systems


Book Description

Bringing together a wealth of knowledge, Environmental Management Handbook, Second Edition, gives a comprehensive overview of environmental problems, their sources, their assessment, and their solutions. Through in-depth entries and a topical table of contents, readers will quickly find answers to questions about environmental problems and their corresponding management issues. This six-volume set is a reimagining of the award-winning Encyclopedia of Environmental Management, published in 2013, and features insights from more than 400 contributors, all experts in their field. The experience, evidence, methods, and models used in studying environmental management are presented here in six stand-alone volumes, arranged along the major environmental systems. Features The first handbook that demonstrates the key processes and provisions for enhancing environmental management Addresses new and cutting-edge topics on ecosystem services, resilience, sustainability, food–energy–water nexus, socio-ecological systems, and more Provides an excellent basic knowledge on environmental systems, explains how these systems function, and offers strategies on how to best manage them Includes the most important problems and solutions facing environmental management today In this third volume, Managing Soils and Terrestrial Systems, the general concepts and processes of the geosphere with its related soil and terrestrial systems are introduced. It explains how these systems function and provides strategies on how to best manage them. It serves as an excellent resource for finding basic knowledge on the geosphere systems and includes important problems and solutions that environmental managers face today. This book practically demonstrates the key processes, methods, and models used in studying environmental management.