Biological NMR Spectroscopy


Book Description

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.




Protein NMR Techniques


Book Description

In its expanded third edition, this Methods in Molecular Biology volume offers techniques for NMR sample preparation, solution and solid state NMR methodologies and data processing, materials lists, step-by-step protocols, troubleshooting tips and more."




Fundamentals of Protein NMR Spectroscopy


Book Description

NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator.




In-cell NMR Spectroscopy


Book Description

In-cell NMR spectroscopy is a relatively new field. Despite its short history, recent in-cell NMR-related publications in major journals indicate that this method is receiving significant general attention. This book provides the first informative work specifically focused on in-cell NMR. It details the historical background of in-cell NMR, host cells for in-cell NMR studies, methods for in-cell biological techniques and NMR spectroscopy, applications, and future perspectives. Researchers in biochemistry, biophysics, molecular biology, cell biology, structural biology as well as NMR analysts interested in biological applications will all find this book valuable reading.




Biomolecular NMR Spectroscopy


Book Description

The technique of nuclear magnetic resonance (NMR) spectroscopy is an important tool in biochemistry and biophysics for the understanding of the structure and ultimately, the function of biomolecules. This textbook explains the salient features of biological NMR spectroscopy to undergraduates and postgraduates taking courses in NMR, biological NMR, physical biochemistry, and biophysics. Unlike other books in the general field of NMR (except the advanced treatises), the approach here is tointroduce and make use of quantum mechanical product operators as well as the classical vector method of explaining the bewildering array of pulse sequences available today. The book covers two- dimensional, three- dimensional, and four- dimensional NMR and their application to protein and DNA structure determination. A unique feature is the coverage of the biological aspects of solid- state NMR spectroscopy. The author provides many selected examples from the research literature, illustratingthe applications of NMR spectroscopy to biological proteins.




Protein NMR Techniques


Book Description

When I was asked to edit the second edition of Protein NMR Techniques, my first thought was that the time was ripe for a new edition. The past several years have seen a surge in the development of novel methods that are truly revolutionizing our ability to characterize biological macromolecules in terms of speed, accuracy, and size limitations. I was particularly excited at the prospect of making these techniques accessible to all NMR labs and for the opportunity to ask the experts to divulge their hints and tips and to write, practically, about the methods. I commissioned 19 chapters with wide scope for Protein NMR Techniques, and the volume has been organized with numerous themes in mind. Chapters 1 and 2 deal with recombinant protein expression using two organisms, E. coli and P. pastoris, that can produce high yields of isotopically labeled protein at a reasonable cost. Staying with the idea of isotopic labeling, Chapter 3 describes methods for perdeuteration and site-specific protonation and is the first of several chapters in the book that is relevant to studies of higher molecular weight systems. A different, but equally powerful, method that uses molecular biology to “edit” the spectrum of a large molecule using segmental labeling is presented in Chapter 4. Having successfully produced a high molecular weight target for study, the next logical step is data acquisition. Hence, the final chapter on this theme, Chapter 5, describes TROSY methods for stru- ural studies.




NMR in Structural Biology


Book Description

The volume presents a survey of the research by Kurt Wthrich and his associates during the period 1965 to 1994. A selection of reprints of original papers on the use of NMR spectroscopy in structural biology is supplemented with an introduction, which outlines the foundations and the historical development of the use of NMR spectroscopy for the determination of three-dimensional structures of biological macromolecules in solution. The original papers are presented in groups highlighting protein structure determination by NMR, studies of dynamic properties and hydration of biological macromolecules, and practical applications of the NMR methodology in fields such as enzymology, transcriptional regulation, immunosuppression and protein folding.




NMR Studies of Translational Motion


Book Description

Overview of NMR theory and applications in fluid systems, fully referenced for research use.




Conformation of Biological Molecules


Book Description

The determination of the three-dimensional structure of a biological molecule is the starting point in the understanding of molecular mechanisms involved in its complex biochemical reactions. The molecular architecture of multimolecular systems such as membranes and chromosomes provides the key to the fascinating field of molecular biology. Stereochemical details of biological macromolecules and their interactions with pharmacological agents form the basis for drug design. Naturally, the study of the structure and function of biological molecules has aroused tremendous interest and investigations in this area are being carried out in a large number of laboratories. The techniques used for this purpose include both experimental methods (X-ray and neutron diffraction measurements, study of NMR, ESR, vibrational and electronic spectra, ORD, CD and dipole moment measurements, biochemical modifications etc. ) and the oretical methods (quantum mechanical and classical potential energy calculations, Monte Carlo simulations and molecular graphics). F or several years now, X-ray diffraction [1] has served as our only source of infor mation on the three-dimensional arrangements of atoms in biopolymers. Fiber-diffrac tion of DNA led to the proposal of the DNA double helix. Fibers of long~hain polymers show ordering in the direction of the fibre-axis but not in the transverse plane. Accurate estimates of the dimensions of helical structures can be made using techniques on the basis of which models of biopolymers can be constructed.




Protein NMR


Book Description

This volume covers state-of-the-art applications of solid-state and solution nuclear magnetic resonance( NMR) spectroscopy to study protein structure, dynamics and interactions. Chapters detail various aspects of data acquisition and processing, determination of the structure, multi-timescale dynamics of entities ranging from individual proteins to large macromolecular complexes to intact viral assemblies. The final two chapters will highlight the promise of NMR beyond field strengths of 1 GHz to study the structure, dynamics and interactions of a larger class of proteins and protein complexes of extraordinary biological interest. Written in the highly successful Methods in Molecular Biology series format, chapters provide detailed laboratory protocols and troubleshooting tips that would be of great practical help to NMR spectroscopists with different levels of expertise.