Noise in Complex Systems and Stochastic Dynamics
Author :
Publisher :
Page : 340 pages
File Size : 29,74 MB
Release : 2005
Category : Noise
ISBN :
Author :
Publisher :
Page : 340 pages
File Size : 29,74 MB
Release : 2005
Category : Noise
ISBN :
Author : Zoltán Gingl
Publisher : SPIE-International Society for Optical Engineering
Page : 664 pages
File Size : 41,57 MB
Release : 2004
Category : Mathematics
ISBN :
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
Author : Henrik Jeldtoft Jensen
Publisher : World Scientific Publishing Company
Page : 300 pages
File Size : 28,46 MB
Release : 2013-02-20
Category : Science
ISBN : 1848169957
Dynamical evolution over long time scales is a prominent feature of all the systems we intuitively think of as complex — for example, ecosystems, the brain or the economy. In physics, the term ageing is used for this type of slow change, occurring over time scales much longer than the patience, or indeed the lifetime, of the observer. The main focus of this book is on the stochastic processes which cause ageing, and the surprising fact that the ageing dynamics of systems which are very different at the microscopic level can be treated in similar ways.The first part of this book provides the necessary mathematical and computational tools and the second part describes the intuition needed to deal with these systems. Some of the first few chapters have been covered in several other books, but the emphasis and selection of the topics reflect both the authors' interests and the overall theme of the book. The second part contains an introduction to the scientific literature and deals in some detail with the description of complex phenomena of a physical and biological nature, for example, disordered magnetic materials, superconductors and glasses, models of co-evolution in ecosystems and even of ant behaviour. These heterogeneous topics are all dealt with in detail using similar analytical techniques.This book emphasizes the unity of complex dynamics and provides the tools needed to treat a large number of complex systems of current interest. The ideas and the approach to complex dynamics it presents have not appeared in book form until now./a
Author : M. Reza Rahimi Tabar
Publisher : Springer
Page : 290 pages
File Size : 45,51 MB
Release : 2019-07-04
Category : Science
ISBN : 3030184722
This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.
Author : Christian Mazza
Publisher : CRC Press
Page : 272 pages
File Size : 13,56 MB
Release : 2016-04-19
Category : Mathematics
ISBN : 1466514949
This is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing system. Examples cover the phage lambda genetic switch, eukaryotic gene expression, noise propagation in gene networks, and more. Most of the text should be accessible to scientists with basic knowledge in calculus and probability theory.
Author : Jinqiao Duan
Publisher : Cambridge University Press
Page : 313 pages
File Size : 40,35 MB
Release : 2015-04-13
Category : Mathematics
ISBN : 1107075394
An accessible introduction for applied mathematicians to concepts and techniques for describing, quantifying, and understanding dynamics under uncertainty.
Author : Lynn Nadel
Publisher : CRC Press
Page : 615 pages
File Size : 44,76 MB
Release : 2018-10-08
Category : Mathematics
ISBN : 0429983204
An excellent series presenting top lecturers from the best institute for complex systems. Topics covered include: stochastic processes; fluid flow; pattern formation; information-based complexity; motor system problems; and the nature of adaptive change.
Author : Jinqiao Duan
Publisher : World Scientific
Page : 306 pages
File Size : 50,15 MB
Release : 2010
Category : Mathematics
ISBN : 9814277258
Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics. The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.
Author : A. J. Roberts
Publisher : SIAM
Page : 760 pages
File Size : 16,77 MB
Release : 2014-12-18
Category : Mathematics
ISBN : 1611973554
Arising out of the growing interest in and applications of modern dynamical systems theory, this book explores how to derive relatively simple dynamical equations that model complex physical interactions. The author’s objectives are to use sound theory to explore algebraic techniques, develop interesting applications, and discover general modeling principles. Model Emergent Dynamics in Complex Systems unifies into one powerful and coherent approach the many varied extant methods for mathematical model reduction and approximation. Using mathematical models at various levels of resolution and complexity, the book establishes the relationships between such multiscale models and clarifying difficulties and apparent paradoxes and addresses model reduction for systems, resolves initial conditions, and illuminates control and uncertainty. The basis for the author’s methodology is the theory and the geometric picture of both coordinate transforms and invariant manifolds in dynamical systems; in particular, center and slow manifolds are heavily used. The wonderful aspect of this approach is the range of geometric interpretations of the modeling process that it produces—simple geometric pictures inspire sound methods of analysis and construction. Further, pictures drawn of state spaces also provide a route to better assess a model’s limitations and strengths. Geometry and algebra form a powerful partnership and coordinate transforms and manifolds provide a powerfully enhanced and unified view of a swathe of other complex system modeling methodologies such as averaging, homogenization, multiple scales, singular perturbations, two timing, and WKB theory. Audience Advanced undergraduate and graduate students, engineers, scientists, and other researchers who need to understand systems and modeling at different levels of resolution and complexity will all find this book useful.
Author : Angelo Vulpiani
Publisher : World Scientific
Page : 482 pages
File Size : 29,7 MB
Release : 2010
Category : Mathematics
ISBN : 9814277665
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.