Non-Equilibrium Air Plasmas at Atmospheric Pressure


Book Description

Atmospheric-pressure plasmas continue to attract considerable research interest due to their diverse applications, including high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, excimer lamps, and other noncoherent light sources. Atmospheric-pressure plasmas in air are of particular importance as they can be generated and maintained without vacuum enclosure and without any additional feed gases. Non-Equilibrium Air Plasmas at Atmospheric Pressure reviews recent advances and applications in the generation and maintenance of atmospheric-pressure plasmas. With contributions from leading international researchers, the coverage includes advances in atmospheric-pressure plasma source development, diagnostics and characterization, air plasma chemistry, modeling and computational techniques, and an assessment of the status and prospects of atmospheric-pressure air plasma applications. The extensive application sections make this book attractive for practitioners in many fields where technologies based on atmospheric-pressure air plasmas are emerging.







Non-Equilibrium Air Plasmas at Atmospheric Pressure


Book Description

Atmospheric-pressure plasmas continue to attract considerable research interest due to their diverse applications, including high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, excimer lamps, and other noncoherent light sources. Atmospheric-pressure plasmas in air are of particular importance as they can be generated and maintained without vacuum enclosure and without any additional feed gases. Non-Equilibrium Air Plasmas at Atmospheric Pressure reviews recent advances and applications in the generation and maintenance of atmospheric-pressure plasmas. With contributions from leading international researchers, the coverage includes advances in atmospheric-pressure plasma source development, diagnostics and characterization, air plasma chemistry, modeling and computational techniques, and an assessment of the status and prospects of atmospheric-pressure air plasma applications. The extensive application sections make this book attractive for practitioners in many fields where technologies based on atmospheric-pressure air plasmas are emerging.




Nonequilibrium Atmospheric Pressure Plasma Jets


Book Description

Nonequilibrium atmospheric pressure plasma jets (N-APPJs) generate plasma in open space rather than in a confined chamber and can be utilized for applications in medicine. This book provides a complete introduction to this fast-emerging field, from the fundamental physics, to experimental approaches, to plasma and reactive species diagnostics. It provides an overview of the development of a wide range of plasma jet devices and their fundamental mechanisms. The book concludes with a discussion of the exciting application of plasmas for cancer treatment. The book provides details on experimental methods including expert tips and caveats. covers novel devices driven by various power sources and the impact of operating conditions on concentrations and fluxes of the reactive species. discusses the latest advances including theory, modeling, and simulation approaches. gives an introduction, overview and details on state of the art diagnostics of small scale high gradient atmospheric pressure plasmas. covers the use of N-APPJs for cancer applications, including discussion of destruction of cancer cells, mechanisms of action, and selectivity studies. XinPei Lu is a Chair Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology. Stephan Reuter is currently Visiting Professor at Université Paris-Saclay. In a recent Alexander von Humboldt research fellowship at Princeton University, he performed ultrafast laser spectroscopy on cold plasmas. Mounir Laroussi is Professor of Electrical and Computer Engineering and director of the Plasma Engineering and Medicine Institute at Old Dominion University. He is a Fellow of IEEE and recipient of an IEEE Merit Award. DaWei Liu is Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology.







Non-Equilibrium Air Plasmas at Atmospheric Pressure


Book Description

Atmospheric-pressure plasmas continue to attract considerable research interest due to their diverse applications, including high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, excimer lamps, and other noncoherent light sources. Atmospheric-pressu










Handbook of Thermal Plasmas


Book Description

This authoritative reference presents a comprehensive review of the evolution of plasma science and technology fundamentals over the past five decades. One of this field’s principal challenges has been its multidisciplinary nature requiring coverage of fundamental plasma physics in plasma generation, transport phenomena under high-temperature conditions, involving momentum, heat and mass transfer, and high-temperature reaction kinetics, as well as fundamentals of material science under extreme conditions. The book is structured in five distinct parts, which are presented in a reader-friendly format allowing for detailed coverage of the science base and engineering aspects of the technology including plasma generation, mathematical modeling, diagnostics, and industrial applications of thermal plasma technology. This book is an essential resource for practicing engineers, research scientists, and graduate students working in the field.