Non-equilibrium Phenomena In Supercooled Fluids, Glasses And Amorphous Materials - Proceedings Of The Workshop


Book Description

This volume contains the Proceedings of the International Workshop on “Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials”, held in Pisa in the early fall of 1995 as a joint initiative of the University of Pisa and of the Scuola Normale Superiore. The goal was to bring together liquid state physicists, chemists and engineers, to review current developments and comparatively discuss experimental facts and theoretical predictions in this vast scientific area. The core of the Workshop was a set of general lectures followed by more specific presentations on current issues in the main areas of the field. This structure has been maintained in this volume, in which a set of five overviews is followed by topically grouped contributions in the five areas of ionic glasses and glassy materials, the glass transition, viscous flow and microscopic relaxation, complex fluids, and polymers. The volume also preserves a record of the many short contributions given to the Workshop through posters, which are grouped in it under the subjects of inorganic glasses, organic glasses and complex fluids, polymers, and theoretical aspects.







Non-crystalline And Nanoscale Materials - Proceedings Of The Fifth International Workshop On Non-crystalline Solids


Book Description

This workshop is the fifth in a series devoted to the presentation and discussion of new findings in the field of noncrystalline solids such as amorphous and nanocrystalline materials, granular systems and fine particles, multiphase systems and thin films, polymers, and other disordered systems. The workshop is divided into six categories, with ten invited contributions.




Broadband Dielectric Spectroscopy


Book Description

Both an introductory course to broadband dielectric spectroscopy and a monograph describing recent dielectric contributions to current topics, this book is the first to cover the topic and has been hotly awaited by the scientific community.




Scaling And Disordered Systems: International Workshop And Collection Of Articles Honoring Professor Antonio Coniglio On The Occasion Of His 60th Birthday


Book Description

Investigation of the fractal and scaling properties of disordered systems has recently become a focus of great interest in research. Disordered or amorphous materials, like glasses, polymers, gels, colloids, ceramic superconductors and random alloys or magnets, do not have a homogeneous microscopic structure. The microscopic environment varies randomly from site to site in the system and this randomness adds to the complexity and the richness of the properties of these materials. A particularly challenging aspect of random systems is their dynamical behavior. Relaxation in disordered systems generally follows an unusual time-dependent trajectory. Applications of scaling and fractal concepts in disordered systems have become a broad area of interdisciplinary research, involving studies of the physics, chemistry, mathematics, biology and engineering aspects of random systems.This book is intended for specialists as well as graduate and postdoctoral students working in condensed-matter or statistical physics. It provides state-of-the-art information on the latest developments in this important and timely topic. The book is divided into three parts: Part I deals with critical phenomena, Part II is devoted to discussion of slow dynamics and Part III involves the application of scaling concepts to random systems. The effects of disorder at the mesoscopic scale as well as the latest results on the dynamical properties of disordered systems are presented. In particular, recent developments in static and dynamic scaling theories and applications of fractal concepts to disordered systems are discussed.




Hydration Processes in Biology


Book Description

The interaction of water at organic surfaces or interfaces is of fundamental and technological interest and importance in chemistry, physics and biology. Progress towards an in-depth, molecular interpretation of the structure and dynamics of interfacial water needs a range of novel experimental and simulation techniques. We are now reaching the stage at which we understand, at the molecular level, the mutual perturbation at a macromolecule/water interface. The aims of this book are to provide with a comprehensive background to the properties of bulk water at the microscopic level and with a substantial account of the theoretical and experimental contributions which have been done to understand the role of water in various systems from some model systems to the more complex ones such as the biological systems.




The Physics of Complex Systems


Book Description

This volume focuses on the area of the physics of complex systems and provides both an overview of the field and more detailed examination of those topics within the field that are currently of greatest interest to researchers. The properties of complex systems play an important role in a variety of different and overlapping areas in physics, chemistry, biology, mathematics and technology. The research field of complex systems is very broad, but this volume attempts to be comprehensive. This book is a useful reference work for researchers in this area, whether graduate students or advanced academics. Up-to-date reviews of cutting-edge topics are provided, compiled by leading authorities and designed to both broaden the reader's insight and encourage the exploration of new problems in related fields. An overview of the present status of the physics of complex systems is provided on the following general topics: (1) scaling behaviours; (2) supramolecular systems; (3) aggregation, aggregation kinetics and disorderly growth mechanisms; (4) granularly matter; (5) polymers, associating polymers, polyelectrolytes and gels; (6) amphiphiles, emulsions, colloids, membranes and interface phenomena; (7) molecular motors; (8) phase separation and out of equilibrium dynamics; (9) turbulence, chaos and chaotic dynamics; (10) glass transition, supercooled fluids and (11) geometrically constrained dynamics.




Polymer Physics and Engineering


Book Description