Non-halogenated Flame-Retardant Technology for Epoxy Thermosets and Composites


Book Description

Non-halogenated Flame-Retardant Technology for Epoxy Resins, Thermosets and Composites provides a comprehensive and up-to-date review of the latest advances and technological developments in this field. The chapters cover important flame-retardant systems based on phosphorus, nitrogen, silicon, and boron as well as novel flame retardant epoxy nanocomposites such as graphene, graphitic carbon nitride, MoS2, phosphorene, CNTs, LDHs, and POSS. The use of flame retardant epoxy thermosets and composites in varying applications are also covered, for example, in coatings and paints, in electric and electronic applications and in aviation and automotive sectors. This comprehensive book will be an essential reference resource for academic and industrial researchers, as well as materials scientists and polymer engineers, and for those who are working in the development of flame retardant epoxy-based materials. - Covers basic properties, flame retardant mechanisms, emerging nanomaterials, and industrial applications - Provides the latest information on biobased flame retardants - Discusses hybridization technologies between different morphologies




Novel Fire Retardant Polymers and Composite Materials


Book Description

Novel Fire Retardant Polymers and Composite Materials reviews the latest scientific developments and technological advances in the design and manufacture of fire retardant polymers and composite materials. Fire retardant polymeric materials are used in a broad range of applications in fields such as aviation, automotive, computer, construction, electronics, and telecommunications. It is essential to have a better understanding of the scientific technology used in the design and manufacture of fire-resistant materials and their end products. This book includes the latest developments in fire retardant technologies for different polymeric material systems, such as PU, PP, PE, PLA, epoxy, rubber, textile, phenol resin, and PA, etc. - Provides cutting-edge research in flame retardant materials, relevant to both scientific and industrial applications - Presents the latest and most up-to-date fire retardant technologies - Discusses the most popular fire retardant polymer systems - Includes the latest developments in fire retardant technologies for different polymeric material systems, such as PU, PP, PE, PLA, epoxy, rubber, textile, phenol resin, and PA




The Non-halogenated Flame Retardant Handbook


Book Description

A one-stop, practical handbook containing all of the current commercial non-halogenated flame retardant technologies as well as experimental systems near commercialization In response to the emphasis on replacing halogenated flame retardants with alternate technologies, this handbook focuses on existing non-halogenated flame retardants and the experimental close-to-production systems that are available today. The Non-Halogenated Flame Retardant Handbook starts with an overview of the regulations and customer perceptions driving non-halogenated flame retardant selections over older halogenated technologies. It then moves on to cover the known major classes of non-halogenated flame retardants, before concluding with the current niche-performing technologies and untried commercial contenders of the future. The Non-Halogenated Flame Retardant Handbook: Takes a practical approach to addressing the narrow subject of non-halogenated flame retardancy—placing more emphasis on flame retardant selection for specific plastics, practical considerations in flame retardant material design, and the various technologies’ strengths and limits Focuses on the proper use of non-halogenated flame retardants, rather than the mechanics of how they work Discusses important future trends in flame retardancy Features sections written by industrial and chemical experts who know how to apply the technology to polymers for fire safety needs




Polymer Green Flame Retardants


Book Description

Polymer Green Flame Retardants covers key issues regarding the response of polymers during fire, the mechanisms of their flame retardation, the regulations imposed on their use, and the health hazards arising from their combustion. Presenting the latest research developments, the book focuses in particular on nanocomposites, believed to be the most promising approach for producing physically superior materials with low flammability and ecological impact. The fire properties of nanocomposites of various matrixes and fillers are discussed, the toxicological characteristics of these materials are analyzed, addressing also their environmental sustainability. Edited by distinguished scientists, including an array of international industry and academia experts, this book will appeal to chemical, mechanical, environmental, material and process engineers, upper-level undergraduate and graduate students in these disciplines, and generally to researchers developing commercially attractive and environmentally friendly fire-proof products. - Provides recent findings on the manufacture of environmentally sustainable flame retardant polymeric materials - Covers legislation and regulations concerning flame retarded polymeric material use - Includes tables containing the fire properties of the most common polymeric materials




Fire Retardancy of Polymeric Materials


Book Description

The third edition of Fire Retardancy of Polymeric Materials provides a single source for all aspects of this highly challenging field of applied research. This authoritative book covers design and non-fire requirements that drive how these materials are fire protected. Detailed study and consideration of chemistry, physics, materials science, economic issues and fire safety science is necessary to address considerations of mechanical, thermal, environmental, and end-use requirements on top of fire protection means that the field requires. This thoroughly revised new edition continues to offer comprehensive coverage of the scientific approach for those developing fire safe materials. It covers new topics such as bio-based materials, regulatory issues, recycling, newer flame retardant chemical classes, and more details on how to flame retard materials for specific market applications. Written by a team of experts, this book covers the fundamentals of polymer burning and combustion and how to apply fire protection or flame-retardant chemistries to specific material classes and applications. The book is written for material scientists and fire safety scientists who seek to develop new fire safe materials or understand why materials burn in our modern environment. Features Connects fundamentals of material flammability to practical fire safety needs Covers current fire safety requirements and regulations affecting flame retardant selection Provides information on chemical structure-property relationships for flame retardancy Provides practical guidance on how to design fire safe materials for specific fire risk scenarios The new edition is expanded to 32 chapters and all chapters are updated and revised with the newest information




Fire Properties of Polymer Composite Materials


Book Description

This book is the first to deal with the important topic of the fire behaviour of fibre reinforced polymer composite materials. The book covers all of the key issues on the behaviour of composites in a fire. Also covered are fire protection materials for composites, fire properties of nanocomposites, fire safety regulations and standards, fire test methods, and health hazards from burning composites.




Polyester


Book Description

Polyester is one of the most important polymers for fibers and composites. Significant developments in nanoparticle-doped polyester composites, polyester recycling, flame-retardant unsaturated polyester resins, and application of polyester for construction and automotive industry are currently carried out. Thus, this book provides leading edge research on improvements of functional properties of polyester, modifications of unsaturated polyester resins, and polyester (especially recycled polyester) usage in construction and in automotive application areas in the form of fiber, resin, and composite. The book also covers the characterization of unique features of polyester found by mechanical, chemical, physical, microstructural, and thermal analyses. This book intends to provide an understanding of the developments of functional polyester production, synthesis, and characterization and support to many academic researchers and graduate students in textile, polymer, composite, chemical science, and research and development managers in recycling and composite applications of polyester in the construction and automotive industry.




Bio-Based Epoxy Polymers, Blends, and Composites


Book Description

State-of-the-art overview on bioepoxy polymers as well as their blends and composites -- covering all aspects from fundamentals to applications! Bioepoxy polymers is an emerging area and have attracted more and more attention due to their biodegradability and good thermo-mechanical performance. In recent years, research progress has been made in synthesis, processing, characterization, and applications of bioepoxy blends and composites. Bioepoxy polymers are very promising candidates to replace the traditional thermosetting nonbiodegradable polymers. Bio-Based Epoxy Polymers, Blends and Composites summaries recent research progress on bioepoxy polymers as well as their blends and composites. It covers aspects from synthesis, processing, various characterization techniques to broad spectrum of applications. It provides a correlation of physical properties with macro, micro and nanostructures of the materials. Moreover, research trends, future directions, and opportunities are also discussed. Attracts attention: Bioepoxy polymers are environmentally friendly and considered as a promising candidate to replace the traditional thermosetting nonbiodegradable polymers Highly application-oriented: Bioepoxy polymers can be used in a broad range of applications such as polymer foams, construction, aerospace, automobiles, self-healing systems One-stop reference: Covers all aspects of bioepoxy polymer, their blends and composites, such as synthesis, properties, processing, characterization and applications Broad audience: Attracts attention from both academia and industry




Fire Retardant Materials


Book Description

"This authoritative reference work will provide a comprehensive source of information for readers concerned with the highly diverse subject of fire retardance. The emphasis is on the burning behaviour and flame retarding properties of polymeric materials. It covers combustion, flame retardants, smoke and toxic products generally and goes on to concentrate on more material-specific aspects of combustion in relation to textiles, composites and bulk polymers. A wide range of fire retardant materials are covered including research in the new field of nanocomposites."--Knovel.




Handbook of Composites from Renewable Materials, Design and Manufacturing


Book Description

This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry. The Handbook of Composites from Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Volume 2 is solely focused on the Design and Manufacturing of renewable materials. Some of the important topics include but not limited to: Design and manufacturing of high performance green composites; manufacturing of high performance biomass-based polyesters by rheological approach; components design of fibrous composite materials; design and manufacturing of bio-based sandwich structures; design and manufacture of biodegradable products from renewable resources; manufacturing and characterization of quicklime filled metal alloy composites for single row deep groove ball bearing; manufacturing of composites from chicken feathers and poly (vinyl chloride); production of porous carbons from resorcinol-formaldehyde gels: applications; composites using agricultural wastes; manufacturing of rice wastes-based natural fiber polymer composites from thermosetting vs. thermoplastic matrices; thermoplastic polymeric composites; natural fiber reinforced PLA composites; rigid closed-cell PUR foams containing polyols derived from renewable resources; preparation and application of the composite from alginate; recent developments in biocomposites of bombyx mori silk fibroin; design and manufacturing of natural fiber/ synthetic fiber reinforced polymer hybrid composites; natural fiber composite strengthening solution for structural beam component for enhanced flexural strength; high pressure resin transfer molding of epoxy resins from renewable sources; cork based structural composites; the use of wheat straw as an agricultural waste in composites for semi-structural applications and design/ manufacturing of sustainable composites.