Non-Relativistic Quantum Dynamics


Book Description

The bulk of known results in spectral and scattering theory for Schrodinger operators has been derived by time-independent (also called stationary) methods, which make extensive use of re solvent estimates and the spectral theorem. In very recent years there has been a partial shift of emphasis from the time-indepen dent to the time-dependent theory, due to the discovery of new, essentially time-dependent proofs of a fair number of the principal results such as asymptotic completeness, absence of singularly con tinuous spectrum and properties of scattering cross sections. These new time-dependent arguments are somewhat simpler than the station ary ones and at the same time considerably closer to physical in tuition, in that they are based on a rather detailed description of the time evolution of states in configUration space (whence the designation "geometric methods" used by some authors). It seemed interesting to me to present some of these new meth ods from a strictly time-dependent point of view, by considering as the basic mathematical object strongly continuous unitary one parameter groups and avoiding the spectral theorem completely. The present volume may be viewed as an essay in this spirit. It is an extended version of a course taught in 1979 at the University of Geneva to undergraduate students enrolled in mathematical physics.




Relativistic Quantum Dynamics


Book Description

In this third volume of three, quantum electrodynamics is formulated in the language of physical „dressed" particles. A theory where charged particles interact via instantaneous action-at-a-distance forces is constructed - without need for renormalization. This theory describes electromagnetic phenomena in terms of directly interacting charges, but in full accord with fundamental principles of relativity and causality. Contents Three ways to look at QFT Dressing What are advantages of dressed Hamiltonian? Coulomb potential and beyond Decays RQD in higher orders Classical electrodynamics Experimental support of RQD Particles and relativity Special theory of relativity Unitary dressing transformation Integral for decay law Coulomb scattering integral in fourth order Relativistic invariance of Coulomb–Darwin–Breit electrodynamics




Non-relativistic Quantum Theory: Dynamics, Symmetry And Geometry


Book Description

This textbook is mainly for physics students at the advanced undergraduate and beginning graduate levels, especially those with a theoretical inclination. Its chief purpose is to give a systematic introduction to the main ingredients of the fundamentals of quantum theory, with special emphasis on those aspects of group theory (spacetime and permutational symmetries and group representations) and differential geometry (geometrical phases, topological quantum numbers, and Chern-Simons Theory) that are relevant in modern developments of the subject. It will provide students with an overview of key elements of the theory, as well as a solid preparation in calculational techniques.




Quantum Mechanics


Book Description

This book presents an accessible treatment of non-relativistic and relativistic quantum mechanics. It is an ideal textbook for undergraduate and graduate physics students, and is also useful to researchers in theoretical physics, quantum mechanics, condensed matter, mathematical physics, quantum chemistry, and electronics. This student-friendly and self-contained textbook covers the typical topics in a core undergraduate program, as well as more advanced, graduate-level topics with an elegant mathematical rigor, contemporary style, and rejuvenated approach. It balances theory and worked examples, which reinforces readers' understanding of fundamental concepts. The analytical methods employed in this book describe physical situations with mathematical rigor and in-depth clarity, emphasizing the essential understanding of the subject matter without need for prior knowledge of classical mechanics, electromagnetic theory, atomic structure, or differential equations. Key Features: • Remains accessible but incorporates a rigorous, updated mathematical treatment • Laid out in a student-friendly structure • Balances theory with its application through examples Lukong Cornelius Fai is a professor of theoretical physics at the Department of Physics, Faculty of Sciences, University of Dschang, Cameroon. He is Head of Condensed Matter and Nanomaterials as well as the Mesoscopic and Multilayer Structures Laboratory. He was formerly a senior associate at the Abdus Salam International Centre for Theoretical Physics (ICTP), Italy. He holds a Master of Science in Physics and Mathematics (1991) as well as a Doctor of Science in Physics and Mathematics (1997) from Moldova State University. He is the author of over 170 scientific publications and five textbooks.




Quantum Mechanics


Book Description

Quantum Mechanics, Third Edition: Non-relativistic Theory is devoted to non-relativistic quantum mechanics. The theory of the addition of angular momenta, collision theory, and the theory of symmetry are examined, together with spin, nuclear structure, motion in a magnetic field, and diatomic and polyatomic molecules. This book is comprised of 18 chapters and begins with an introduction to the basic concepts of quantum mechanics, with emphasis on the uncertainty principle, the principle of superposition, and operators, as well as the continuous spectrum and the wave function. The following chapters explore energy and momentum; Schrödinger's equation; angular momentum; and motion in a centrally symmetric field and in a magnetic field. Perturbation theory, spin, and the properties of quasi-classical systems are also considered. The remaining chapters deal with the identity of particles, atoms, and diatomic and polyatomic molecules. The final two chapters describe elastic and inelastic collisions. This monograph will be a valuable source of information for physicists.




Non-Relativistic Quantum Mechanics


Book Description

"Introduces readers to non-relativistic quantum mechanics and its mathematical methods"--




Relativistic Quantum Physics


Book Description

Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory. The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory, elementary processes in QED are introduced, and regularization, renormalization and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.




Relativistic Quantum Mechanics. Wave Equations


Book Description

Relativistic Quantum Mechanics. Wave Equations concentrates mainly on the wave equations for spin-0 and spin-1/2 particles. Chapter 1 deals with the Klein-Gordon equation and its properties and applications. The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions. Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles. Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner). The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course. This third edition has been slightly revised to bring the text up-to-date.




Hilbert Space Methods in Quantum Mechanics


Book Description

The necessary foundation in quantum mechanics is covered in this book. Topics include basic properties of Hibert spaces, scattering theory, and a number of applications such as the S-matrix, time delay, and the Flux-Across-Surfaces Theorem.




Quantum Mechanics of Particles and Wave Fields


Book Description

A complete explanation of quantum mechanics, from its early non-relativistic formulation to the complex field theories used so extensively in modern theoretical research, this volume assumes no specialized knowledge of the subject. It stresses relativistic quantum mechanics, since this subject plays such an important role in research, explaining the principles clearly and imparting an accurate understanding of abstract concepts. This text deals with quantum mechanics from its earliest developments, covering both the quantum mechanics of wave fields and the older quantum theory of particles. The final chapter culminates with the author's presentation of his revolutionary theory of fundamental length--a concept designed to meet many of quantum theory's longstanding basic difficulties.