Nondestructive Testing to Identify Concrete Bridge Deck Deterioration


Book Description

" TRB's second Strategic Highway Research Program (SHRP 2) Report S2-R06A-RR-1: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration identifies nondestructive testing technologies for detecting and characterizing common forms of deterioration in concrete bridge decks.The report also documents the validation of promising technologies, and grades and ranks the technologies based on results of the validations.The main product of this project will be an electronic repository for practitioners, known as the NDToolbox, which will provide information regarding recommended technologies for the detection of a particular deterioration. " -- publisher's description.




Proceedings of the Fifth International Conference of Transportation Research Group of India


Book Description

This book (in three volumes) comprises the proceedings of the Fifth Conference of Transportation Research Group of India (CTRG2019) focusing on emerging opportunities and challenges in the field of transportation of people and freight. The contents of the book include characterization of conventional and innovative pavement materials, operational effects of road geometry, user impact of multimodal transport projects, spatial analysis of travel patterns, socio-economic impacts of transport projects, analysis of transportation policy and planning for safety and security, technology-enabled models of mobility services, etc. This book will be beneficial to researchers, educators, practitioners and policymakers alike.




Non-Destructive Testing of Structures


Book Description

The Special Issue “Non-Destructive Testing of Structures” has been proposed to present the recent developments in the field of the diagnostics of structural materials and components in civil and mechanical engineering. The papers highlighted in this editorial concern various aspects of non-invasive diagnostics, including such topics as the condition assessments of civil and mechanical structures and the connections of structural elements, the inspection of cultural heritage monuments, the testing of structural materials, structural health monitoring systems, the integration of non-destructive testing methods, advanced signal processing for the non-destructive testing of structures (NDT), damage detection and damage imaging, as well as modeling and numerical analyses for supporting structural health monitoring (SHM) systems.




Civil Engineering Applications of Ground Penetrating Radar


Book Description

This book, based on Transport and Urban Development COST Action TU1208, presents the most advanced applications of ground penetrating radar (GPR) in a civil engineering context, with documentation of instrumentation, methods and results. It explains clearly how GPR can be employed for the surveying of critical transport infrastructure, such as roads, pavements, bridges and tunnels and for the sensing and mapping of underground utilities and voids. Detailed attention is also devoted to use of GPR in the inspection of geological structures and of construction materials and structures, including reinforced concrete, steel reinforcing bars and pre/post-tensioned stressing ducts. Advanced methods for solution of electromagnetic scattering problems and new data processing techniques are also presented. Readers will come to appreciate that GPR is a safe, advanced, non destructive and noninvasive imaging technique that can be effectively used for the inspection of composite structures and the performance of diagnostics relevant to the entire life cycle of civil engineering works.




Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision


Book Description

This volume contains the papers presented at IALCCE2018, the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE2018), held in Ghent, Belgium, October 28-31, 2018. It consists of a book of extended abstracts and a USB device with full papers including the Fazlur R. Khan lecture, 8 keynote lectures, and 390 technical papers from all over the world. Contributions relate to design, inspection, assessment, maintenance or optimization in the framework of life-cycle analysis of civil engineering structures and infrastructure systems. Life-cycle aspects that are developed and discussed range from structural safety and durability to sustainability, serviceability, robustness and resilience. Applications relate to buildings, bridges and viaducts, highways and runways, tunnels and underground structures, off-shore and marine structures, dams and hydraulic structures, prefabricated design, infrastructure systems, etc. During the IALCCE2018 conference a particular focus is put on the cross-fertilization between different sub-areas of expertise and the development of an overall vision for life-cycle analysis in civil engineering. The aim of the editors is to provide a valuable source of cutting edge information for anyone interested in life-cycle analysis and assessment in civil engineering, including researchers, practising engineers, consultants, contractors, decision makers and representatives from local authorities.




Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges


Book Description

Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 Keynote Lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge diagnostics, health monitoring, non-destructive testing, field testing, safety and serviceability, assessment and evaluation, damage identification, deterioration modelling, repair and retrofitting strategies, bridge reliability, fatigue and corrosion, extreme loads, advanced experimental simulations, and advanced computer simulations, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of more rational decision-making on bridge maintenance, safety, risk, management and life-cycle performance of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.




Innovation in Near-Surface Geophysics


Book Description

Innovation in Near-Surface Geophysics: Instrumentation, Application, and Data Processing Methods offers an advanced look at state-of-the-art and innovative technologies for near surface geophysics, exposing the latest, most effective techniques in an accessible way. By addressing a variety of geophysical applications, including cultural heritage, civil engineering, characteristics of soil, and others, the book provides an understanding of the best products and methodologies modern near surface geophysics has to offer. It proposes tips for new ideas and projects, and encourages collaboration across disciplines and techniques for the best implementation and results.Clearly organized, with contributions from leaders from throughout geophysics, Innovation in Near-Surface Geophysics is an important guide for geophysicists who hope to gain a better understanding of the tools and techniques available. - Addresses a variety of applications in near-surface geophysics, including cultural heritage, civil engineering, soil analysis, etc. - Provides insight to available products and techniques and offers suggestions for future developments - Clearly organized by techniques and their applications




Available Accelerated Bridge Construction Options for Short Span Bridges


Book Description

By employing prefabricated bridge elements and systems, Accelerated Bridge Construction reduces on-site construction time and traffic disruptions, and enhances long-term performance. ABC is particularly advantageous for short-span bridges that are well-suited to standardized prefabrication. In such cases, the entire superstructure and substructure can often be constructed using prefabricated deck elements, modular decks, or systems that span the full bridge width. The construction methods can range from traditional crane installations to Self-Propelled Modular Transport units or slide-in techniques for moving the entire superstructures. This book introduces the concept of ABC and examines its application in the context of short-span bridge construction. It categorizes and details short-span bridges based on various criteria and evaluates the performance of the existing bridges. Decision-making processes regarding the adoption of ABC, choice of elements, systems, and construction methods are also discussed. Additionally, the book covers the inspection of short-span bridges and includes a design example.







Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures


Book Description

This book gathers the latest advances and innovations in the field of quality control and improvement of bridges and structures, as presented by international researchers and engineers at the 1st Conference of the European Association on Quality Control of Bridges and Structures (EUROSTRUCT 2021), held in Padua, Italy on August 29 – September 1, 2021. Contributions include a wide range of topics such as testing and advanced diagnostic techniques for damage detection; SHM and AI, IoT and machine learning for data analysis of bridges and structures; fiberoptics and smart sensors for long-term SHM; structural reliability, risk, robustness, redundancy and resilience for bridges; corrosion models, fatigue analysis and impact of hazards on infrastructure components; bridge and asset management systems, and decision-making models; Life-Cycle Analysis, retrofit and service-life extension, risk management protocols; quality control plans, sustainability and green materials.