Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis


Book Description

This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.




Nonlinear and Modern Mathematical Physics


Book Description

This book gathers peer-reviewed, selected contributions from participants of the 6th International Workshop on Nonlinear and Modern Mathematical Physics (NMMP-2022), hosted virtually from June 17–19, 2022. Works contained in this volume cover topics like nonlinear differential equations, integrable systems, Hamiltonian systems, inverse scattering transform, Painleve's analysis, nonlinear wave phenomena and applications, numerical methods of nonlinear wave equations, quantum integrable systems, and more. In this book, researchers and graduate students in mathematics and related areas will find new methods and tools that only recently have been developed to solve nonlinear problems. The sixth edition of the NMMP workshop was organized by Florida A&M University in Tallahassee, Florida, USA, with support from the University of South Florida, Florida State University, Embry-Riddle Aeronautical University, Savannah State University, Prairie View A&M University, and Beijing Jiaotong University. The aim was to bring together researchers from around the world to present their findings and foster collaboration for future research.




Mathematical Mechanics: From Particle To Muscle


Book Description

This unprecedented book offers all the details of the mathematical mechanics underlying modern modeling of skeletal muscle contraction. The aim is to provide an integrated vision of mathematics, physics, chemistry and biology for this one understanding. The method is to take advantage of latest mathematical technologies — Eilenberg-Mac Lane category theory, Robinson infinitesimal calculus and Kolmogorov probability theory — to explicate Particle Mechanics, The Theory of Substances (categorical thermodynamics), and computer simulation using a diagram-based parallel programming language (stochastic timing machinery). Proofs rely almost entirely on algebraic calculations without set theory. Metaphors and analogies, and distinctions between representational pictures, mental model drawings, and mathematical diagrams are offered.AP level high school calculus students, high school science teachers, undergraduates and graduate college students, and researchers in mathematics, physics, chemistry, and biology may use this integrated publication to broaden their perspective on science, and to experience the precision that mathematical mechanics brings to understanding the molecular mechanism vital for nearly all animal behavior.




Nonlinear and Modern Mathematical Physics


Book Description

The volume is very beneficial to both starting and experienced researchers working in the field of integrable nonlinear equations, soliton theory, and nonlinear waves. It will be an excellent reference book for graduate students majoring in mathematical physics and engineering sciences. This volume covers a broad range of current interesting topics in nonlinear and modern mathematical physics, and reviews recent developments in integrable systems, soliton theory and nonlinear dynamics. The book is suitable for both starting and experienced researchers working in nonlinear sciences, and it is a good reference for students of mathematical, physical and engineering sciences.




Solitons in Field Theory and Nonlinear Analysis


Book Description

There are two approaches in the study of differential equations of field theory. The first, finding closed-form solutions, works only for a narrow category of problems. Written by a well-known active researcher, this book focuses on the second, which is to investigate solutions using tools from modern nonlinear analysis.




Nonlinear Physics with Mathematica for Scientists and Engineers


Book Description

Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text.




Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems


Book Description

The book reviews a large number of 1- and 2-dimensional equations that describe nonlinear phenomena in various areas of modern theoretical and mathematical physics. It is meant, above all, for physicists who specialize in the field theory and physics of elementary particles and plasma, for mathe maticians dealing with nonlinear differential equations, differential geometry, and algebra, and the theory of Lie algebras and groups and their representa tions, and for students and post-graduates in these fields. We hope that the book will be useful also for experts in hydrodynamics, solid-state physics, nonlinear optics electrophysics, biophysics and physics of the Earth. The first two chapters of the book present some results from the repre sentation theory of Lie groups and Lie algebras and their counterpart on supermanifolds in a form convenient in what follows. They are addressed to those who are interested in integrable systems but have a scanty vocabulary in the language of representation theory. The experts may refer to the first two chapters only occasionally. As we wanted to give the reader an opportunity not only to come to grips with the problem on the ideological level but also to integrate her or his own concrete nonlinear equations without reference to the literature, we had to expose in a self-contained way the appropriate parts of the representation theory from a particular point of view.




Invitation to Nonlinear Algebra


Book Description

Nonlinear algebra provides modern mathematical tools to address challenges arising in the sciences and engineering. It is useful everywhere, where polynomials appear: in particular, data and computational sciences, statistics, physics, optimization. The book offers an invitation to this broad and fast-developing area. It is not an extensive encyclopedia of known results, but rather a first introduction to the subject, allowing the reader to enter into more advanced topics. It was designed as the next step after linear algebra and well before abstract algebraic geometry. The book presents both classical topics—like the Nullstellensatz and primary decomposition—and more modern ones—like tropical geometry and semidefinite programming. The focus lies on interactions and applications. Each of the thirteen chapters introduces fundamental concepts. The book may be used for a one-semester course, and the over 200 exercises will help the readers to deepen their understanding of the subject.




A Course in Modern Mathematical Physics


Book Description

This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.