Nonlinear Control and Filtering for Stochastic Networked Systems


Book Description

In this book, control and filtering problems for several classes of stochastic networked systems are discussed. In each chapter, the stability, robustness, reliability, consensus performance, and/or disturbance attenuation levels are investigated within a unified theoretical framework. The aim is to derive the sufficient conditions such that the resulting systems achieve the prescribed design requirements despite all the network-induced phenomena. Further, novel notions such as randomly occurring sensor failures and consensus in probability are discussed. Finally, the theories/techniques developed are applied to emerging research areas. Key Features Unifies existing and emerging concepts concerning stochastic control/filtering and distributed control/filtering with an emphasis on a variety of network-induced complexities Includes concepts like randomly occurring sensor failures and consensus in probability (with respect to time-varying stochastic multi-agent systems) Exploits the recursive linear matrix inequality approach, completing the square method, Hamilton-Jacobi inequality approach, and parameter-dependent matrix inequality approach to handle the emerging mathematical/computational challenges Captures recent advances of theories, techniques, and applications of stochastic control as well as filtering from an engineering-oriented perspective Gives simulation examples in each chapter to reflect the engineering practice




Networked Nonlinear Stochastic Time-Varying Systems


Book Description

This book copes with the filter design, fault estimation and reliable control problems for different classes of nonlinear stochastic time-varying systems with network-enhanced complexities (e.g. state-multiplicative noises, stochastic nonlinearities, stochastic inner couplings, channel fadings, measurement quantizations etc).




Communication-Protocol-Based Filtering and Control of Networked Systems


Book Description

Communication-Protocol-Based Filtering and Control of Networked Systems is a self-contained treatment of the state of the art in communication-protocol-based filtering and control; recent advances in networked systems; and the potential for application in sensor networks. This book provides new concepts, new models and new methodologies with practical significance in control engineering and signal processing. The book first establishes signal-transmission models subject to different communication protocols and then develops new filter design techniques based on those models and preset requirements for filtering performance. The authors then extend this work to finite-horizon H-infinity control, ultimately bounded control and finite-horizon consensus control. The focus throughout is on three typical communications protocols: the round-robin, random-access and try-once-and-discard protocols, and the systems studied are drawn from a variety of classes, among them nonlinear systems, time-delayed and time-varying systems, multi-agent systems and complex networks. Readers are shown the latest techniques—recursive linear matrix inequalities, backward recursive difference equations, stochastic analysis and mapping methods. The unified framework for communication-protocol-based filtering and control for different networked systems established in the book will be of interest to academic researchers and practicing engineers working with communications and other signal-processing systems. Senior undergraduate and graduate students looking to increase their knowledge of current methods in control and signal processing of networked systems will also find this book valuable.




Recent Advances in Control and Filtering of Dynamic Systems with Constrained Signals


Book Description

This book introduces the principle theories and applications of control and filtering problems to address emerging hot topics in feedback systems. With the development of IT technology at the core of the 4th industrial revolution, dynamic systems are becoming more sophisticated, networked, and advanced to achieve even better performance. However, this evolutionary advance in dynamic systems also leads to unavoidable constraints. In particular, such elements in control systems involve uncertainties, communication/transmission delays, external noise, sensor faults and failures, data packet dropouts, sampling and quantization errors, and switching phenomena, which have serious effects on the system’s stability and performance. This book discusses how to deal with such constraints to guarantee the system’s design objectives, focusing on real-world dynamical systems such as Markovian jump systems, networked control systems, neural networks, and complex networks, which have recently excited considerable attention. It also provides a number of practical examples to show the applicability of the presented methods and techniques. This book is of interest to graduate students, researchers and professors, as well as R&D engineers involved in control theory and applications looking to analyze dynamical systems with constraints and to synthesize various types of corresponding controllers and filters for optimal performance of feedback systems.




Multi-model Jumping Systems: Robust Filtering and Fault Detection


Book Description

This book focuses on multi-model systems, describing how to apply intelligent technologies to model complex multi-model systems by combining stochastic jumping system, neural network and fuzzy models. It focuses on robust filtering, including finite-time robust filtering, finite-frequency robust filtering and higher order moment robust filtering schemes, as well as fault detection problems for multi-model jump systems, such as observer-based robust fault detection, filtering-based robust fault detection and neural network-based robust fault detection methods. The book also demonstrates the validity and practicability of the theoretical results using simulation and practical examples, like circuit systems, robot systems and power systems. Further, it introduces readers to methods such as finite-time filtering, finite-frequency robust filtering, as well as higher order moment and neural network-based fault detection methods for multi-model jumping systems, allowing them to grasp the modeling, analysis and design of the multi-model systems presented and implement filtering and fault detection analysis for various systems, including circuit, network and mechanical systems.




Control and State Estimation for Dynamical Network Systems with Complex Samplings


Book Description

This book focuses on the control and state estimation problems for dynamical network systems with complex samplings subject to various network-induced phenomena. It includes a series of control and state estimation problems tackled under the passive sampling fashion. Further, it explains the effects from the active sampling fashion, i.e., event-based sampling is examined on the control/estimation performance, and novel design technologies are proposed for controllers/estimators. Simulation results are provided for better understanding of the proposed control/filtering methods. By drawing on a variety of theories and methodologies such as Lyapunov function, linear matrix inequalities, and Kalman theory, sufficient conditions are derived for guaranteeing the existence of the desired controllers and estimators, which are parameterized according to certain matrix inequalities or recursive matrix equations. Covers recent advances of control and state estimation for dynamical network systems with complex samplings from the engineering perspective Systematically introduces the complex sampling concept, methods, and application for the control and state estimation Presents unified framework for control and state estimation problems of dynamical network systems with complex samplings Exploits a set of the latest techniques such as linear matrix inequality approach, Vandermonde matrix approach, and trace derivation approach Explains event-triggered multi-rate fusion estimator, resilient distributed sampled-data estimator with predetermined specifications This book is aimed at researchers, professionals, and graduate students in control engineering and signal processing.




Networked Control Systems


Book Description

This book nds its origin in the WIDE PhD School on Networked Control Systems, which we organized in July 2009 in Siena, Italy. Having gathered experts on all the aspects of networked control systems, it was a small step to go from the summer school to the book, certainly given the enthusiasm of the lecturers at the school. We felt that a book collecting overviewson the important developmentsand open pr- lems in the eld of networked control systems could stimulate and support future research in this appealing area. Given the tremendouscurrentinterests in distributed control exploiting wired and wireless communication networks, the time seemed to be right for the book that lies now in front of you. The goal of the book is to set out the core techniques and tools that are ava- able for the modeling, analysis and design of networked control systems. Roughly speaking, the book consists of three parts. The rst part presents architectures for distributed control systems and models of wired and wireless communication n- works. In particular, in the rst chapter important technological and architectural aspects on distributed control systems are discussed. The second chapter provides insight in the behavior of communication channels in terms of delays, packet loss and information constraints leading to suitable modeling paradigms for commu- cation networks.




Asynchronous Control for Networked Systems


Book Description

This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel results presented in Asynchronous Control for Networked Systems are transmitted in a concise and clear style supported by simulation and experimental examples. Some applications are also provided. Academic researchers and graduate students investigating control theory, control engineering and computer communications systems can use this monograph to learn how asynchronous control helps tackle the problems of networked systems in centralized and distributed schemes. Control practitioners at work in power systems, vehicle coordination and traffic networks will also find this book helpful in improving the performance of their systems.




Control Synthesis for Semi-Markovian Switching Systems


Book Description

The book focuses on control synthesis for semi-Markovian switching systems. By using multiple semi-Markovian Lyapunov function approaches, a basic theoretical framework is formed toward the issue of control synthesis for semi-Markovian switching systems. This is achieved by providing an in-depth study on several major topics such as sliding mode control, finite-time control, quantized control, event-triggered control, synchronization, and fuzzy control for semi-Markovian switching systems. The comprehensive and systematic treatment of semi-Markovian switching systems is one of the major features of the book, which is particularly suitable for readers who are interested to learn control theory and engineering. By reading this book, the reader can obtain the most advanced analysis and design techniques for stochastic switching systems.




Multi-Sensor Filtering Fusion with Censored Data Under a Constrained Network Environment


Book Description

This book presents the up-to-date research developments and novel methodologies on multi-sensor filtering fusion (MSFF) for a class of complex systems subject to censored data under a constrained network environment. The contents of this book are divided into two parts covering centralized and distributed MSFF design methodologies. The work provides a framework of optimal centralized/distributed filter design and stability and performance analysis for the considered systems along with designed filters. Simulations presented in this book are implemented using MATLAB. Features: Includes concepts, backgrounds and models on censored data, filtering fusion and communication constraints. Reviews case studies to provide clear engineering insights into the developed fusion theories and techniques. Provides theoretic values and engineering insights of the censored data and constrained network. Discusses performance evaluation of the presented multi-sensor fusion algorithms. Explores promising research directions on future multi-sensor fusion. This book is aimed at graduate students and researchers in networked control, sensor networks, and data fusion.