Topics In Nonlinear Time Series Analysis, With Implications For Eeg Analysis


Book Description

This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented — algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram.




Nonlinear Time Series Analysis


Book Description

The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.




Applied Nonlinear Time Series Analysis: Applications In Physics, Physiology And Finance


Book Description

Nonlinear time series methods have developed rapidly over a quarter of a century and have reached an advanced state of maturity during the last decade. Implementations of these methods for experimental data are now widely accepted and fairly routine; however, genuinely useful applications remain rare. This book focuses on the practice of applying these methods to solve real problems.To illustrate the usefulness of these methods, a wide variety of physical and physiological systems are considered. The technical tools utilized in this book fall into three distinct, but interconnected areas: quantitative measures of nonlinear dynamics, Monte-Carlo statistical hypothesis testing, and nonlinear modeling. Ten highly detailed applications serve as case studies of fruitful applications and illustrate the mathematical techniques described in the text.




Nonlinear Time Series Analysis with R


Book Description

Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians — with limited knowledge of nonlinear dynamics — to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic (please see www.marco.bittelli.com). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework — condensed from sound empirical practices recommended in the literature — that details a step-by-step procedure for applying NLTS in real-world data diagnostics.




Nonlinear Dynamics and Statistics


Book Description

This book describes the state of the art in nonlinear dynamical reconstruction theory. The chapters are based upon a workshop held at the Isaac Newton Institute, Cambridge University, UK, in late 1998. The book's chapters present theory and methods topics by leading researchers in applied and theoretical nonlinear dynamics, statistics, probability, and systems theory. Features and topics: * disentangling uncertainty and error: the predictability of nonlinear systems * achieving good nonlinear models * delay reconstructions: dynamics vs. statistics * introduction to Monte Carlo Methods for Bayesian Data Analysis * latest results in extracting dynamical behavior via Markov Models * data compression, dynamics and stationarity Professionals, researchers, and advanced graduates in nonlinear dynamics, probability, optimization, and systems theory will find the book a useful resource and guide to current developments in the subject.




Dynamics of Nonlinear Time-Delay Systems


Book Description

Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different branches of science and technology as well as to the synchronization of their coupled versions. Last but not least, the presentation as a whole strives for a balance between the necessary mathematical description of the basics and the detailed presentation of real-world applications.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems


Book Description

This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation? Here, the term "non-parametrically" exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data. The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results. The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations. The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.




Nonlinear Time Series Analysis of Economic and Financial Data


Book Description

Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.




Linear, Time-varying Approximations to Nonlinear Dynamical Systems


Book Description

Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.