Nonlinear Internal Waves in Lakes


Book Description

Internal wave dynamics in lakes (and oceans) is an important physical component of geophysical fluid mechanics of ‘quiescent’ water bodies of the Globe. The formation of internal waves requires seasonal stratification of the water bodies and generation by (primarily) wind forces. Because they propagate in basins of variable depth, a generated wave field often experiences transformation from large basin-wide scales to smaller scales. As long as this fission is hydrodynamically stable, nothing dramatic will happen. However, if vertical density gradients and shearing of the horizontal currents in the metalimnion combine to a Richardson number sufficiently small (




Hydrodynamics of Lakes


Book Description




Lake Ecosystem Ecology


Book Description

A derivative of the Encyclopedia of Inland Waters, Lake Ecosystem Ecology examines the workings of the lake and reservoir ecosystems of our planet. Information and perspectives crucial to the understanding and management of current environmental problems are covered, such as eutrophication, acid rain and climate change. Because the articles are drawn from an encyclopedia, the articles are easily accessible to interested members of the public, such as conservationists and environmental decision makers. - Includes an up-to-date summary of global aquatic ecosystems and issues - Covers current environmental problems and management solutions - Features full-color figures and tables to support the text and aid in understanding







Biogeochemistry of Inland Waters


Book Description

A derivative of the Encyclopedia of Inland Waters, Biogeochemistry of Inland Waters examines the transformation, flux and cycling of chemical compounds in aquatic and terrestrial ecosystems, combining aspects of biology, ecology, geology, and chemistry. Because the articles are drawn from an encyclopedia, they are easily accessible to interested members of the public, such as conservationists and environmental decision makers. - This derivative text describes biogeochemical cycles of organic and inorganic elements and compounds in freshwater ecosystems




Encyclopedia of Inland Waters


Book Description

Inland aquatic habitats occur world-wide at all scales from marshes, swamps and temporary puddles, to ponds, lakes and inland seas; from streams and creeks to rolling rivers. Vital for biological diversity, ecosystem function and as resources for human life, commerce and leisure, inland waters are a vital component of life on Earth. The Encyclopedia of Inland Waters describes and explains all the basic features of the subject, from water chemistry and physics, to the biology of aquatic creatures and the complex function and balance of aquatic ecosystems of varying size and complexity. Used and abused as an essential resource, it is vital that we understand and manage them as much as we appreciate and enjoy them. This extraordinary reference brings together the very best research to provide the basic and advanced information necessary for scientists to understand these ecosystems – and for water resource managers and consultants to manage and protect them for future generations. Encyclopedic reference to Limnology - a key core subject in ecology taught as a specialist course in universitiesOver 240 topic related articles cover the field Gene Likens is a renowned limnologist and conservationist, Emeritus Director of the Institute of Ecosystems Research, elected member of the American Philosophical Society and recipient of the 2001 National Medal of Science Subject Section Editors and authors include the very best research workers in the field




Solitons


Book Description

This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schrödinger (NLS), Korteweg-de-Vries Burger’s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies.




Encyclopedia of Lakes and Reservoirs


Book Description

Lakes and reservoirs hold about 90% of the world's surface fresh water, but overuse, water withdrawal and pollution of these bodies puts some one billion people at risk. The Encyclopedia of Lakes and Reservoirs reviews the physical, chemical and ecological characteristics of lakes and reservoirs, and describes their uses and environmental state trends in different parts of the world. Superbly illustrated throughout, it includes some 200 entries in a range of topics, including acidification, artificialisation, canals, climate change effects, dams, dew ponds, drainage, eutrofication, evaporation, fisheries, hydro-electric power, nutrients, organic pollution, paleolimnology, reservoir capacities and depths, sedimentation, water resources and more.




Physics of Lakes


Book Description

The ongoing thread in this volume of Physics of Lakes is the presentation of different methods of investigation for processes taking place in real lakes with a view to understanding lakes as components of the geophysical environment. It is divided into three parts. Part I is devoted to numerical modeling techniques and demonstrates that (i) wind-induced currents in depth-integrated models can only adequately predict current fields for extremely shallow lakes, and (ii) that classical multi-layered simulation models can only adequately reproduce current and temperature distributions when the lake is directly subjected to wind, but not the post-wind oscillating response. This makes shock capturing discretization techniques and Mellor-Yamada turbulence closure schemes necessary, as well as extremely high grid resolution to reduce the excessive numerical diffusion. Part II is devoted to the presentation of principles of observation and laboratory experimental procedures. It details the principles of operation for current, temperature, conductivity and other sensors applied in the field. It also discusses the advantages and limitations of common measuring methods like registration from stationary or drifting buoys, sounding and profiling from a boat, etc. Questions of data accuracy, quality, and reliability are also addressed. The use of laboratory experiments on a rotating platform is based on an exposition of dimensional analysis and model theory and illustrated using Lake Constance as an example. Part III gives an account of the dynamics of lake water as a particle-laden fluid, which, coupled with the transport of the bottom sediments, leads to morphodynamic changes of the bathymetry in estuarine and possibly whole lake regions. An elegant spatially one-dimensional theory makes it possible to derive analytic solutions of deltaic formations which are corroborated by laboratory experiments. A full three-dimensional description of the evolution of the alluvial bathymetry under prescribed tributary sediment input indicates a potential subject for future research.




The Turbulent Ocean


Book Description

The subject of ocean turbulence is in a state of discovery and development with many intellectual challenges. This book describes the principal dynamic processes that control the distribution of turbulence, its dissipation of kinetic energy and its effects on the dispersion of properties such as heat, salinity, and dissolved or suspended matter in the deep ocean, the shallow coastal and the continental shelf seas. It focuses on the measurement of turbulence, and the consequences of turbulent motion in the oceanic boundary layers at the sea surface and near the seabed. Processes are illustrated by examples of laboratory experiments and field observations. The Turbulent Ocean provides an excellent resource for senior undergraduate and graduate courses, as well as an introduction and general overview for researchers. It will be of interest to all those involved in the study of fluid motion, in particular geophysical fluid mechanics, meteorology and the dynamics of lakes.