Nonlinear Optics in the Filamentation Regime


Book Description

This thesis provides deep insights into currently controversial questions in laser filamentation, a highly complex phenomenon involving nonlinear optical effects and plasma physics. First, based on the concrete picture of a femtosecond laser beam which self-pinches its radial intensity distribution, the thesis delivers a novel explanation for the remarkable and previously unexplained phenomenon of pulse self-compression in filaments. Moreover, the work addresses the impact of a non-adiabatic change of both nonlinearity and dispersion on such an intense femtosecond pulse transiting from a gaseous dielectric material to a solid one. Finally, and probably most importantly, the author presents a simple and highly practical theoretical approach for quantitatively estimating the influence of higher-order nonlinear optical effects in optics. These results shed new light on recent experimental observations, which are still hotly debated and may completely change our understanding of filamentation, causing a paradigm change concerning the role of higher-order nonlinearities in optics.







The Elements of Nonlinear Optics


Book Description

There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.




Femtosecond Laser Filamentation


Book Description

This book attempts to give a discussion of the physics and current and potential applications of the self-focusing of an intense femtosecond laser pulse in a tra- parent medium. Although self-focusing is an old subject of nonlinear optics, the consequence of self-focusing of intense femtosecond laser pulses is totally new and unexpected. Thus, new phenomena are observed, such as long range lam- tation, intensity clamping, white light laser pulse, self-spatial ltering, self-group phase locking, self-pulse compression, clean nonlinear uorescence, and so on. Long range propagation at high intensity, which is seemingly against the law of diffraction, is probably one of the most exciting consequences of this new sub- eld of nonlinear optics. Because the intensity inside the lament core is high, new ways of doing nonlinear optics inside the lament become possible. We call this lamentation nonlinear optics. We shall describe the generation of pulses at other wavelengths in the visible and ultraviolet (UV) starting from the near infrared pump pulse at 800 nm through four-wave-mixing and third harmonic generation, all in gases. Remotely sensing uorescence from the fragments of chemical and biological agents in all forms, gaseous, aerosol or solid, inside the laments in air is demonstrated in the labo- tory. The results will be shown in the last part of the book. Through analyzing the uorescence of gas molecules inside the lament, an unexpected physical process pertaining to the interaction of synchrotron radiation with molecules is observed.




Laser Systems for Applications


Book Description

This book addresses topics related to various laser systems intended for the applications in science and various industries. Some of them are very recent achievements in laser physics (e.g. laser pulse cleaning), while others face their renaissance in industrial applications (e.g. CO2 lasers). This book has been divided into four different sections: (1) Laser and terahertz sources, (2) Laser beam manipulation, (3) Intense pulse propagation phenomena, and (4) Metrology. The book addresses such topics like: Q-switching, mode-locking, various laser systems, terahertz source driven by lasers, micro-lasers, fiber lasers, pulse and beam shaping techniques, pulse contrast metrology, and improvement techniques. This book is a great starting point for newcomers to laser physics.




Pulsed Lasers and Laser Applications


Book Description

Digest contains the materials on the research and applications of pulsed lasers. Abstracts are interesting for researches and engineers in the field of quantum electronics, spectroscopy, plasma physics, medicine, remote sensing and laser technologies.




Nonlinear Systems, Vol. 2


Book Description

This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction arrays, waveguide arrays, photonic crystals and optical fibers. Nonlinear excitations are inherent to Bose-Einstein Condensates, constituting an excellent benchmark for testing their properties and providing a pathway for future discoveries in fundamental physics.




Quantum Photonics: Pioneering Advances and Emerging Applications


Book Description

This book brings together reviews by internationally renowed experts on quantum optics and photonics. It describes novel experiments at the limit of single photons, and presents advances in this emerging research area. It also includes reprints and historical descriptions of some of the first pioneering experiments at a single-photon level and nonlinear optics, performed before the inception of lasers and modern light detectors, often with the human eye serving as a single-photon detector. The book comprises 19 chapters, 10 of which describe modern quantum photonics results, including single-photon sources, direct measurement of the photon's spatial wave function, nonlinear interactions and non-classical light, nanophotonics for room-temperature single-photon sources, time-multiplexed methods for optical quantum information processing, the role of photon statistics in visual perception, light-by-light coherent control using metamaterials, nonlinear nanoplasmonics, nonlinear polarization optics, and ultrafast nonlinear optics in the mid-infrared.




Photonica2015


Book Description




Optical Waves and Laser Beams in the Irregular Atmosphere


Book Description

The book introduces optical wave propagation in the irregular turbulent atmosphere and the relations to laser beam and LIDAR applications for both optical communication and imaging. It examines atmosphere fundamentals, structure, and content. It explains specific situations occurring in the irregular atmosphere and for specific natural phenomena that affect optical ray and laser beam propagation. It emphasizes how to use LIDAR to investigate atmospheric phenomena and predict primary parameters of the irregular turbulent atmosphere and suggests what kinds of optical devices to operate in different atmospheric situations to minimize the deleterious effects of natural atmospheric phenomena.