Nonlinear Stochastic Systems Theory and Applications to Physics


Book Description

Approach your problems from the right end and begin with the answers. Then one day, perhaps you will find the final answer. "The Hermit Clad In Crane Feathers" In R. van Gullk's The Chinese Haze Hurders. It Isn't that they can't see the solution. It IS that they can't see the problem. G. K. Chesterton. The Scandal of Father Brown. "The POint of a Pin." Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of k now ledge of m athemat i cs and re I ated fie I ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, COding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And In addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely Integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the eXisting classificatIOn schemes.




Stochastic Evolution Systems


Book Description

This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations. The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems. This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.




Stochastic Differential Systems Analysis and Filtering


Book Description

Gives applied methods for studying stochastic differential systems--in particular, the methods for finding the finite-dimensional distributions of the state vector and of the output of such systems, and also the estimation methods of the state and of the parameters of differential systems based on observations (filtering and extrapolation theory). Also studied are stochastic differential equations of general type with arbitrary processes and independent increments. The equations with Wiener processes are considered as a special case. The construction of stochastic differential systems in the book is based on Pugachev's equations for finite-dimensional characteristic functions of the processes determined by stochastic differential equations. Includes end-of-chapter problems.




Chaotic Transitions in Deterministic and Stochastic Dynamical Systems


Book Description

The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to dynamical systems theory or the theory of stochastic processes is required. The theoretical prerequisites and developments are presented in the first part of the book. The second part of the book is devoted to applications, ranging from physics to mechanical engineering, naval architecture, oceanography, nonlinear control, stochastic resonance, and neurophysiology.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Nonlinear Stochastic Systems Theory and Applications to Physics


Book Description

Approach your problems from the right end and begin with the answers. Then one day, perhaps you will find the final answer. "The Hermit Clad In Crane Feathers" In R. van Gullk's The Chinese Haze Hurders. It Isn't that they can't see the solution. It IS that they can't see the problem. G. K. Chesterton. The Scandal of Father Brown. "The POint of a Pin." Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of k now ledge of m athemat i cs and re I ated fie I ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, COding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And In addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely Integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the eXisting classificatIOn schemes.




Nonlinear Fokker-Planck Equations


Book Description

Centered around the natural phenomena of relaxations and fluctuations, this monograph provides readers with a solid foundation in the linear and nonlinear Fokker-Planck equations that describe the evolution of distribution functions. It emphasizes principles and notions of the theory (e.g. self-organization, stochastic feedback, free energy, and Markov processes), while also illustrating the wide applicability (e.g. collective behavior, multistability, front dynamics, and quantum particle distribution). The focus is on relaxation processes in homogeneous many-body systems describable by nonlinear Fokker-Planck equations. Also treated are Langevin equations and correlation functions. Since these phenomena are exhibited by a diverse spectrum of systems, examples and applications span the fields of physics, biology and neurophysics, mathematics, psychology, and biomechanics.




Uncertainty Modeling in Vibration, Control and Fuzzy Analysis of Structural Systems


Book Description

This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.




Stochastic Processes for Physicists


Book Description

Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.




Stochastic Systems: Theory And Applications


Book Description

This book presents the general theory and basic methods of linear and nonlinear stochastic systems (StS) i.e. dynamical systems described by stochastic finite- and infinite-dimensional differential, integral, integrodifferential, difference etc equations. The general StS theory is based on the equations for characteristic functions and functionals. The book outlines StS structural theory, including direct numerical methods, methods of normalization, equivalent linearization and parametrization of one- and multi-dimensional distributions, based on moments, quasimoments, semi-invariants and orthogonal expansions. Special attention is paid to methods based on canonical expansions and integral canonical representations. About 500 exercises and problems are provided. The authors also consider applications in mathematics and mechanics, physics and biology, control and information processing, operations research and finance.