Quaternion Algebras


Book Description

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.




The Algebraic and Geometric Theory of Quadratic Forms


Book Description

This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.




Rational Quadratic Forms


Book Description

Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.







Algebraic and Arithmetic Theory of Quadratic Forms


Book Description

This proceedings volume contains papers presented at the International Conference on the algebraic and arithmetic theory of quadratic forms held in Talca (Chile). The modern theory of quadratic forms has connections with a broad spectrum of mathematical areas including number theory, geometry, and K-theory. This volume contains survey and research articles covering the range of connections among these topics. The survey articles bring readers up-to-date on research and open problems in representation theory of integral quadratic forms, the algebraic theory of finite square class fields, and developments in the theory of Witt groups of triangulated categories. The specialized articles present important developments in both the algebraic and arithmetic theory of quadratic forms, as well as connections to geometry and K-theory. The volume is suitable for graduate students and research mathematicians interested in various aspects of the theory of quadratic forms.




Symmetric Bilinear Forms


Book Description

The theory cf quadratic forms and the intimately related theory of sym metrie bilinear forms have a lang and rich his tory, highlighted by the work of Legendre, Gauss, Minkowski, and Hasse. (Compare [Dickson] and [Bourbaki, 24, p. 185].) Our exposition will concentrate on the rela tively recent developments which begin with and are inspired by Witt's 1937 paper "Theorie der quadratischen Formen in beliebigen Körpern." We will be particularly interested in the work of A. Pfister and M. Knebusch. However, some older material will be described, particularly in Chapter II. The presentation is based on lectures by Milnor at the Institute for Ad vanced Study, and at Haverford College under the Phillips Lecture Pro gram, during the Fall of 1970, as weIl as Iectures at Princeton University il1 1966. We want to thank J. Cunningham, M. Knebusch, M. Kneser, A. Rosenberg, W. Scharlau and J.-P. Serre for helpful suggestions and corrections. Prerequisites. The reader should be familiar with the rudiments of algebra., incJuding for example the concept of tensor product for mo dules over a commutative ring. A few individual sections will require quite a bit more. The logical relationship between the various chapters can be roughly described by the diagram below. There are also five appendices, largely self-contained, which treat special topics. I. Arbitrary commutative rings I H. The ring of V. Miscellaneous IIl. Fields integers examples IV. Dedekind domains Contents Chapter r. Basie Coneepts ...




Quadratic Forms and Their Applications


Book Description

This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.




Quadratic and Hermitian Forms


Book Description

Contains the proceedings of the 1983 Seminar on Quadratic and Hermitian Forms held at McMaster University, July 1983. Between 1945 and 1965, most of the work in quadratic (and hermitian) forms took place in arithmetic theory (M Eichler, M Kneser, O T O'Meara).




Quadratic Forms with Applications to Algebraic Geometry and Topology


Book Description

A gem of a book bringing together 30 years worth of results that are certain to interest anyone whose research touches on quadratic forms.




Introduction to Quadratic Forms


Book Description