Novel Anticancer Agents


Book Description

Novel Anticancer Agents offers pertinent basic science information on strategies used for the rational design and discovery of novel anticancer agents, and, in addition, translational studies involving clinical trial design and execution with these novel, mostly cytostatic agents. This book covers basic science strategies that are being used in drug discovery and preclinical evaluation focused on novel molecular targets, as well as clinical trial methodology including clinical pharmacokinetics and imaging to address issues of efficacy evaluation of the new, relatively non-cytotoxic anticancer agents. At present, there is no book that provides such an integration of basic and clinical studies of novel anticancer agents, covering both drug discovery and translational research extensively. Addresses the critical issues involved in the development of novel agents for cancer therapy by experts in the field Presents drug discovery strategies Discusses regulatory issues surrounding drug development




Chemistry and Pharmacology of Anticancer Drugs


Book Description

While drug therapies developed in the last 80 years have markedly improved treatment outcomes and the management of some types of cancers, the lack of effectiveness and side effects associated with the most common treatment types remain unacceptable. However, recent technological advances are leading to improved therapies based on targeting distinct biological pathways in cancer cells. Chemistry and Pharmacology of Anticancer Drugs is a comprehensive survey of all families of anticancer agents and therapeutic approaches currently in use or in advanced stages of clinical trials, including biological-based therapies. The book is unique in providing molecular structures for all anticancer agents, discussing them in terms of history of development, chemistry, mechanism of action, structure–function relationships, and pharmacology. It also provides relevant information on side effects, dosing, and formulation. The authors, renowned scientists in cancer research and drug discovery, also provide up-to-date information on the drug discovery process, including discussions of new research tools, tumor-targeting strategies, and fundamental concepts in the relatively new areas of precision medicine and chemoprevention. Chemistry and Pharmacology of Anticancer Drugs is an indispensable resource for cancer researchers, medicinal chemists and other biomedical scientists involved in the development of new anticancer therapies. Its breadth of coverage, clear explanations, and illustrations also make it suitable for undergraduate and postgraduate courses in medicine, pharmacy, nursing, dentistry, nutrition, the biomedical sciences, and related disciplines. Key Features: Summarizes the fundamental causes of cancer, modes of treatment, and strategies for cancer drug discovery Brings together a broad spectrum of information relating to the chemistry and pharmacology of all families of anticancer agents and therapies Includes up-to-date information on cutting-edge aspects of cancer treatments such as biomarkers, pharmacogenetics, and pharmacogenomics Features new chapters on the "Evolution of Anticancer Therapies", "Antibody-Based Therapies", and "Cancer Chemoprevention"




Anticancer Agents from Natural Products


Book Description

Plants, marine organisms, and microorganisms have evolved complex chemical defense and signaling systems that are designed to protect them from predators and provide other biological benefits. These organisms thus produce substances containing novel chemotypes that may have beneficial effects for humans. As collection methods improve and new screen




Anticancer Agents from Natural Products, Second Edition


Book Description

The approach to drug discovery from natural sources has yielded many important new pharmaceuticals inaccessible by other routes. In many cases the isolated natural product may not be an effective drug for any of several reasons, but it nevertheless may become a drug through chemical modification or have a novel pharmacophore for future drug design. In summarizing the status of natural products as cancer chemotherapeutics, Anticancer Agents from Natural Products, Second Edition covers the: History of each covered drug—a discussion of its mechanism on action, medicinal chemistry, synthesis, and clinical applications Potential for novel drug discovery through the use of genome mining as well as future developments in anticancer drug discovery Important biosynthetic approaches to "unnatural" natural products Anticancer Agents from Natural Products, Second Edition discusses how complex target-oriented synthesis—enabled by historic advances in methodology—has enormously expanded the scope of the possible. This book covers the current clinically used anticancer agents that are either natural products or are clearly derived from natural product leads. It also reviews drug candidates currently in clinical development since many of these will be clinically used drugs in the future. Examples include the drugs etoposide and teniposide derived from the lead compound podophyllotoxin; numerous analogs derived from taxol; topotecan, derived from camptothecin; and the synthetic clinical candidates, E7389 and HTI-286, developed from the marine leads, halichondrin B and hemiasterlin.




Handbook of Anticancer Drugs from Marine Origin


Book Description

This timely desk reference focuses on marine-derived bioactive substances which have biological, medical and industrial applications. The medicinal value of these marine natural products are assessed and discussed. Their function as a new and important resource in novel, anticancer drug discovery research is also presented in international contributions from several research groups. For example, the potential role of Spongistatin, Apratoxin A, Eribulin mesylate, phlorotannins, fucoidan, as anticancer agents is explained. The mechanism of action of bioactive compounds present in marine algae, bacteria, fungus, sponges, seaweeds and other marine animals and plants are illustrated via several mechanisms. In addition, this handbook lists various compounds that are active candidates in chemoprevention and their target actions. The handbook also places into context the demand for anticancer nutraceuticals and their use as potential anti-cancer pharmaceuticals and medicines. This study of advanced and future types of natural compounds from marine sources is written to facilitate the understanding of Biotechnology and its application to marine natural product drug discovery research.




Medicinal Chemistry of Anticancer Drugs


Book Description

Medicinal Chemistry of Anticancer Drugs, Second Edition, provides an updated treatment from the point of view of medicinal chemistry and drug design, focusing on the mechanism of action of antitumor drugs from the molecular level, and on the relationship between chemical structure and chemical and biochemical reactivity of antitumor agents. Antitumor chemotherapy is a very active field of research, and a huge amount of information on the topic is generated every year. Cytotoxic chemotherapy is gradually being supplemented by a new generation of drugs that recognize specific targets on the surface or inside cancer cells, and resistance to antitumor drugs continues to be investigated. While these therapies are in their infancy, they hold promise of more effective therapies with fewer side effects. Although many books are available that deal with clinical aspects of cancer chemotherapy, this book provides a sorely needed update from the point of view of medicinal chemistry and drug design. - Presents information in a clear and concise way using a large number of figures - Historical background provides insights on how the process of drug discovery in the anticancer field has evolved - Extensive references to primary literature




Anticancer Drugs


Book Description

The past decades have seen major developments in the understanding of the cellular and molecular biology of cancer. Significant progress has been achieved regarding long-term survival for the patients of many cancers with the use of tamoxifen for treatment of breast cancer, treatment of chronic myeloid leukaemia with imatinib, and the success of biological drugs. The transition from cytotoxic chemotherapy to targeted cancer drug discovery and development has resulted in an increasing selection of tools available to oncologists. In this Special Issue of Pharmaceuticals, we highlight the opportunities and challenges in the discovery and design of innovative cancer therapies, novel small-molecule cancer drugs and antibody–drug conjugates, with articles covering a variety of anticancer therapies and potential relevant disease states and applications. Significant efforts are being made to develop and improve cancer treatments and to translate basic research findings into clinical use, resulting in improvements in survival rates and quality of life for cancer patients. We demonstrate the possibilities and scope for future research in these areas and also highlight the challenges faced by scientists in the area of anticancer drug development leading to improved targeted treatments and better survival rates for cancer patients.




Novel Designs of Early Phase Trials for Cancer Therapeutics


Book Description

Novel Designs of Early Phase Trials for Cancer Therapeutics provides a comprehensive review by leaders in the field of the process of drug development, the integration of molecular profiling, the changes in early phase trial designs, and endpoints to optimally develop a new generation of cancer therapeutics. The book discusses topics such as statistical perspectives on cohort expansions, the role and application of molecular profiling and how to integrate biomarkers in early phase trials. Additionally, it discusses how to incorporate patient reported outcomes in phase one trials. This book is a valuable resource for medical oncologists, basic and translational biomedical scientists, and trainees in oncology and pharmacology who are interested in learning how to improve their research by using early phase trials.




Metal-based Anticancer Agents


Book Description

Metal-based anticancer drugs are among the most successful therapeutic agents, as evidenced by the frequent prescription of selected platinum and arsenic compounds to patients. Metal-based Anticancer Agents covers the interdisciplinary world of inorganic drug discovery and development by introducing the most prominent compound classes based on different transition metals, discussing emerging concepts and enabling methods, as well as presenting key pre-clinical and clinical aspects. Recent progress on the unique features of next-generation targeted metal-based anticancer agents, including supramolecular coordination complexes used for both therapy and drug delivery, promise a bright future beyond the benefits of pure cytotoxic activity. With contributions from global leaders in the field, this book will serve as a useful reference to established researchers as well as a practical guide to those new to metallodrugs, and postgraduate students of medicinal chemistry and metallobiology.




Anticancer Drug Development Guide


Book Description

This unique volume traces the critically important pathway by which a "molecule" becomes an "anticancer agent. " The recognition following World War I that the administration of toxic chemicals such as nitrogen mustards in a controlled manner could shrink malignant tumor masses for relatively substantial periods of time gave great impetus to the search for molecules that would be lethal to specific cancer cells. Weare still actively engaged in that search today. The question is how to discover these "anticancer" molecules. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval, Second Edition describes the evolution to the present of preclinical screening methods. The National Cancer Institute's high-throughput, in vitro disease-specific screen with 60 or more human tumor cell lines is used to search for molecules with novel mechanisms of action or activity against specific phenotypes. The Human Tumor Colony-Forming Assay (HTCA) uses fresh tumor biopsies as sources of cells that more nearly resemble the human disease. There is no doubt that the greatest successes of traditional chemotherapy have been in the leukemias and lymphomas. Since the earliest widely used in vivo drug screening models were the murine L 1210 and P388 leukemias, the community came to assume that these murine tumor models were appropriate to the discovery of "antileukemia" agents, but that other tumor models would be needed to discover drugs active against solid tumors.