Nonlinear Optical Effects in Organic Polymers


Book Description

Photonics, the counterpart of electronics, involves the usage of Photons instead of electrons to process information and perform various switching operations. Photonics is projected to be the technology of the future because of the gain in speed, processing and interconnectivity of network. Nonlinear optical processes will play the key role in photonics Where they can be used for frequency conversion, optical switching and modulation. Organic molecules and polymers have emerged as a new class of highly promising nonlinear optical materials Which has captured the attention of scientists world wide. The organic systems offer the advantage of large nonresonant nonlinearities derived from the 1T electrons contribution, femtosecond response time and the flexibility to modify their molecular structures. In addition, organic polymers can easily be fabricated in various device structures compatible with the fiber-optics communication system. The area of nonlinear optics of organic molecules and polymers offers exciting opportunities for both fundamental research and technologic development. It is truly an interdisciplinary area. This proceeding is the outcome of the first NATO Advanced Research WOrkshop in this highly important area. The objective of the workshop was to provide a forum for scientists of varying background from both universities and industries to come together and interface their expertize. The scope of the workshop was multidisciplinary with active participations from Chemists, physicists, engineers and materials scientists from many countries.













Nonlinear Optics


Book Description

This book examines nonlinear optical effects in nonlinear nanophotonics, plasmonics, and novel materials for nonlinear optics. It discusses different types of plasmonic excitations such as volume plasmons, localized surface plasmons, and surface plasmon polaritons. It also examines the specific features of nonlinear optical phenomena in plasmonic nanostructures and metamaterials. Chapters cover such topics as applications of nanophotonics, novel materials for nonlinear optics based on nanoparticles, polymers, and photonic glasses.




Azo Polymers


Book Description

This book explores functional polymers containing aromatic azo chromophores in side-chain, main-chain and other parts of their structures, known as azo polymers and which share common photoresponsive properties. It focuses on the molecular architecture of azo polymers, the synthetic methods and their most important functions, such as photoinduced birefringence and dichroism, surface-relief-grating (SRG) formation, and light-driven deformation of liquid crystal elastomers. It combines a general survey of the subject and in-depth discussions of each topic, including numerous illustrations, figures, and photographs. Offering a balance between an introduction to the core concepts and a snapshot of hot and emerging topics, it is of interest to graduate students and researchers working in this and related fields. Xiaogong Wang is a Professor at the Department of Chemical Engineering, Tsinghua University, China.




Polymers in Telecommunication Devices


Book Description

This report discusses the use of the use of polymers instead of and in conjunction with, traditional platforms such as indium phosphide and ferroelectric ceramic lithium niobate. Critical comparisons are made between use of polymers and alternative. This review report gives an overview of all the elements of optical transmission and switching systems that are used in telecommunications and is a fully interdisciplinary account of materials and device design issues. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database gives useful references for further reading.







SPE/ANTEC 1999 Proceedings


Book Description

Volume 2 of the conference proceedings of the SPE/Antac on 'Plastics Bridging the Millennia- subtopic of 'Materials', held on the 2-6 May 1999 in New York City, USA.