Novel Nanomaterials for Biomedical, Environmental and Energy Applications


Book Description

Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials. - Offers comprehensive details on novel and emerging nanomaterials - Presents a comprehensive view of new and emerging tactics for the synthesis of efficient nanomaterials - Describes and monitors the functions of applications of new and emerging nanomaterials in the biomedical, environmental and energy fields




Novel Nanomaterials


Book Description

"Nanomaterials" is a special topic of recent research and is a milestone of nanoscience and nanotechnology. Nanoscale materials are a series of substances/compounds, in which at least one dimension has smaller size than 100 nm. Nanomaterials have a broad area of development, which is growing rapidly day by day. Their impact on commercial applications as well as on the respective academia and education is huge. The basic points of this book can be divided into synthesis of nanomaterials and their applications. For example, special mention is about metal-oxide nanostructures, nanocomposites, and polymeric nanomaterials. Also, synthesis, characterizations, various processes, fabrications and some promising applications are also developed and analyzed.




Novel Nanomaterials


Book Description

This book discusses novel nanomaterials and their various aspects. Chapters provide detailed information on new preparation routes for novel nanomaterials and their applications in supercapacitors, nanogenerators, removal of industrial pollutants, biosensors, self-cleaning coatings, aquatic robotics, and the construction industry.




Handbook of Nanomaterials for Industrial Applications


Book Description

Handbook of Nanomaterials for Industrial Applications explores the use of novel nanomaterials in the industrial arena. The book covers nanomaterials and the techniques that can play vital roles in many industrial procedures, such as increasing sensitivity, magnifying precision and improving production limits. In addition, the book stresses that these approaches tend to provide green, sustainable solutions for industrial developments. Finally, the legal, economical and toxicity aspects of nanomaterials are covered in detail, making this is a comprehensive, important resource for anyone wanting to learn more about how nanomaterials are changing the way we create products in modern industry. - Demonstrates how cutting-edge developments in nanomaterials translate into real-world innovations in a range of industry sectors - Explores how using nanomaterials can help engineers to create innovative consumer products - Discusses the legal, economical and toxicity issues arising from the industrial applications of nanomaterials




Nanomaterials for Medical Applications


Book Description

Structurally the work is demarcated into the six most popular areas of research: (1) biocompatibility of nanomaterials with living organisms in their various manifestations (2) nanobiosensors for clinical diagnostics, detecting biomolecules which are useful in the clinical diagnosis of genetic, metabolically acquired, induced or infectious disease (3) targeted drug delivery for nanomaterials in their various modifications (4) nanomedical devices and structures which are used in the development of implantable medical devices and structures such as nanorobots (5) nanopharmacology, as novel nanoparticles are increasingly engineered to diagnose conditions and recognize pathogens, identify ideal pharmaceutical agents to treat the condition or pathogens, fuel high-yield production of matched pharmaceuticals (potentially in vivo), locate, attach or enter target tissue,




Handbook of Carbon-Based Nanomaterials


Book Description

Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. - Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more - Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial - Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications







Emerging Nanomaterials for Recovery of Toxic and Radioactive Metal Ions from Environmental Media


Book Description

Emerging Nanomaterials for Recovery of Toxic and Radioactive Metal Ions from Environmental Media covers nanomaterials used in the environmental remediation of sites contaminated by toxic or radioactive heavy metals. The book comprehensively covers the use of MOF-based nanomaterials, COF-based nanomaterials, MXene-based nanomaterials, nZVI-based nanomaterials and carbon-based nanomaterials in remediation techniques and details the main interaction mechanisms between toxic/radioactive metal ions and the described novel nanomaterials through kinetic analysis, thermodynamic analysis, spectroscopic techniques and theoretical calculations. It provides a thorough reference on the use of the described novel nanomaterials for academics, researchers and advanced postgraduates in the environmental sciences and environmental chemistry. - Provides a comprehensive and systematic reference on various novel nanomaterials that are available for use in the treatment of heavy metal ions and radioactive wastes - Presents the latest knowledge on the interaction of toxic and radioactive metal ions with novel nanomaterials, including how to choose different materials for specific uses - Covers the principles and functionalization of nanomaterials in environmental remediation, enabling an understanding of methodologies and best choice in nanomaterials




Toxic Effects of Nanomaterials


Book Description

"Toxic Effects of Nanomaterials provides an authoritative work of international experts in the field of nanotoxicology spanning 8 chapters. A key feature of the e-book is a broad coverage of phytotoxicity of nanoparticles, which is largely neglected in man"




Cutting-Edge Applications of Nanomaterials in Biomedical Sciences


Book Description

Cutting-Edge Applications of Nanomaterials in Biomedical Sciences is a comprehensive exploration of the revolutionary impact of nanotechnology on the field of medicine. This book delves into the remarkable potential of nanomaterials in advancing medical diagnostics and therapeutics, particularly in drug delivery. It serves as an indispensable guide, presenting the latest developments in nanomedicine, precision medicine, and nanoengineering while addressing the challenges and opportunities that arise. The book covers a wide range of topics, from nanomaterials for cancer therapy to their applications in imaging and diagnostics. It discusses the transformative role of nanomaterials in targeted delivery and controlled release, as well as their potential in regenerative medicine and infectious disease diagnosis and treatment. By presenting cutting-edge research and developments in the field, this book aims to bridge the gap between bench and bedside, providing a vital resource for researchers, clinicians, and students in the biomedical sciences. Moreover, it highlights the commercialization potential of nanomedicine, fostering collaboration between academia and industry. Policymakers and regulators will also find this book invaluable for understanding the ethical and safety implications of incorporating nanomaterials into medical practices.