Polymer-based Nanocomposites for Energy and Environmental Applications


Book Description

Polymer-Based Nanocomposites for Energy and Environmental Applications provides a comprehensive and updated review of major innovations in the field of polymer-based nanocomposites for energy and environmental applications. It covers properties and applications, including the synthesis of polymer based nanocomposites from different sources and tactics on the efficacy and major challenges associated with successful scale-up fabrication. The chapters provide cutting-edge, up-to-date research findings on the use of polymer based nanocomposites in energy and environmental applications, while also detailing how to achieve material’s characteristics and significant enhancements in physical, chemical, mechanical and thermal properties. It is an essential reference for future research in polymer based nanocomposites as topics such as sustainable, recyclable and eco-friendly methods for highly innovative and applied materials are current topics of importance. Covers a wide range of research on polymer based nanocomposites Provides updates on the most relevant polymer based nanocomposites and their prodigious potential in the fields of energy and the environment Demonstrates systematic approaches and investigations from the design, synthesis, characterization and applications of polymer based nanocomposites Presents a useful reference and technical guide for university academics and postgraduate students (Masters and Ph.D.)




Novel Polymeric Materials For Environmental Applications


Book Description

Polymeric materials play an essential and ubiquitous role in many fields including structural and packaging materials, drug development, tissue engineering, wastewater treatment, pollutant removal, separation, water purification, smart agriculture, and even road and building construction. This book contains eleven comprehensive chapters covering topics from deriving polymers from natural resources or wastes to developing novel functional polymeric materials in the form of membranes, hydrogels, foams, nanocomposites for various environmental applications. This book also discusses the utilization of waste plastics and the challenges and progress made in recycling and reusing commercially viable polymers. Such information is valuable and accelerates technological progress. Each chapter further gives the current fabrication methodology, challenges, and future scope of these materials related to their environmental applications. Thus anyone working on polymer-based materials will benefit from the comprehensive knowledge presented in this book on novel polymeric materials and their various environmental applications.




New Polymer Nanocomposites for Environmental Remediation


Book Description

New Polymer Nanocomposites for Environmental Remediation summarizes recent progress in the development of materials' properties, fabrication methods and their applications for treatment of contaminants, pollutant sensing and detection. This book presents current research into how polymer nanocomposites can be used in environmental remediation, detailing major environmental issues, and key materials properties and existing polymers or nanomaterials that can solve these issues. The book covers the fundamental molecular structure of polymers used in environmental applications, the toxicology, economy and life-cycle analysis of polymer nanocomposites, and an analysis of potential future applications of these materials. Recent research and development in polymer nanocomposites has inspired the progress and use of novel and cost-effective environmental applications. - Presents critical, actionable guidelines to the structure and property design of nanocomposites in environmental remediation - Focuses on taking technology out of the lab and into the real world - Summarizes the latest developments in polymer nanocomposites and their applications in catalytic degradation, adsorptive removal and detection of contaminants in the environment - Enables researchers to stay ahead of the curve, with a full discussion of regulatory issues and potential new applications and materials in this area




Polymer Science and Nanotechnology


Book Description

Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. - Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields - Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles - Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them




Novel Polymeric Materials for Environmental Applications


Book Description

Polymeric materials play an essential and ubiquitous role in many fields including structural and packaging materials, drug development, tissue engineering, wastewater treatment, pollutant removal, separation, water purification, smart agriculture, and even road and building construction. This book contains eleven comprehensive chapters covering topics from deriving polymers from natural resources or wastes to developing novel functional polymeric materials in the form of membranes, hydrogels, foams, nanocomposites for various environmental applications. This book also discusses the utilization of waste plastics and the challenges and progress made in recycling and reusing commercially viable polymers. Such information is valuable and accelerates technological progress. Each chapter further gives the current fabrication methodology, challenges, and future scope of these materials related to their environmental applications. Thus anyone working on polymer-based materials will benefit from the comprehensive knowledge presented in this book on novel polymeric materials and their various environmental applications.




Smart Polymer Nanocomposites


Book Description

Smart Polymer Nanocomposites: Biomedical and Environmental Applications presents the latest information on smart polymers and their promising application in various fields, including their role in delivery systems for drugs, tissue engineering scaffolds, cell culture sports, bioseparation, and sensors or actuator systems. - Features detailed information on the preparation, characterization and applications of smart functional polymer composites - Covers a broad range of applications in both the biomedical and environmental engineering fields - Chapters are written by authors with diverse background expertise from the faculties of chemistry, engineering and the manufacturing industry




Smart Polymers and Their Applications


Book Description

Smart Polymers and Their Applications, Second Edition presents an up-to-date resource of information on the synthesis and properties of different types of smart polymers, including temperature, pH, electro, magnetic and photo-responsive polymers, amongst others. It is an ideal introduction to this field, as well as a review of the latest research in this area. Shape memory polymers, smart polymer hydrogels, and self-healing polymer systems are also explored. In addition, a very strong focus on applications of smart polymers is included for tissue engineering, smart polymer nanocarriers for drug delivery, and the use of smart polymers in medical devices. Additionally, the book covers the use of smart polymers for textile applications, packaging, energy storage, optical data storage, environmental protection, and more. This book is an ideal, technical resource for chemists, chemical engineers, materials scientists, mechanical engineers and other professionals in a range of industries. - Includes a significant number of new chapters on smart polymer materials development, as well as new applications development in energy storage, sensors and devices, and environmental protection - Provides a multidisciplinary approach to the development of responsive polymers, approaching the subject by the different types of polymer (e.g. temperature-responsive) and its range of applications




Polymeric Materials


Book Description

This book collects the articles published in the Special Issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications”. It shows the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems, and tissue engineering. These polymeric materials are presented as films, coatings, particles, fibers, hydrogels, or networks. The potential to modify and modulate their surfaces or their content by different techniques, such as click chemistry, ozonation, breath figures, wrinkle formation, or electrospray, are also explained, taking into account the relationship between the structure and properties in the final application. Moreover, new trends in the development of such materials are presented, using more environmental friendly and safe methods, which, at the same time, have a high impact on our society.




Carbon-based Polymer Nanocomposites for Environmental and Energy Applications


Book Description

Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications provides the fundamental physico-chemical characterizations of recently explored carbon-based polymer nanocomposites, such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes and other nano-sized carbon allotropes. The book also covers the applications of carbon-based polymer nanocomposite in the environmental and energy fields. Topics range from the various approaches that have been explored and developed for the fabrication of carbon-based polymer nanocomposite, to their applications in tackling environmental and energy related issues. - Provides a clear picture of the current state-of-the-art and future trends in carbon-based polymer nanomaterials - Explains the interactions between nanofiller-polymer matrices and mechanisms related to applications in environmental pollution and energy shortage - Includes computational and experimental studies of the physical and chemical properties of carbon-based polymer nanocomposites - Features chapters written by world leading experts




Plastics and the Environment


Book Description

Plastics offer a variety of environmental benefits. However, their production, applications, and disposal present many environmental concerns. Plastics and the Environment provides state-of-the-art technical and research information on the complex relationship between the plastic and polymer industry and the environment, focusing on the sustainability, environmental impact, and cost—benefit tradeoffs associated with different technologies. Bringing together the field’s leading researchers, Anthony Andrady’s innovative collection not only covers how plastics affect the environment, but also how environmental factors affect plastics. The relative benefits of recycling, resource recovery, and energy recovery are also discussed in detail. The first of the book’s four sections represents a basic introduction to the key subject matter of plastics and the environment; the second explores several pertinent applications of plastics with environmental implications–packaging, paints and coatings, textiles, and agricultural film use. The third section discusses the behavior of plastics in some of the environments in which they are typically used, such as the outdoors, in biotic environments, or in fires. The final section consists of chapters on recycling and thermal treatment of plastics waste. Chapters include: Commodity Polymers Plastics in Transportation Biodegradation of Common Polymers Thermal Treatment of Polymer Waste Incineration of Plastics The contributors also focus on the effectiveness of recent technologies in mitigating environmental impacts, particularly those for managing plastics in the solid waste stream. Plastic and design engineers, polymer chemists, material scientists, and ecologists will find Plastics and the Environment to be a vital resource to this critical industry.