Experimental Techniques in Nuclear and Particle Physics


Book Description

I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like “the velocity of the electrons in atoms is ?1% of the velocity of light”, a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work. This is an open access book.




Handbook of Particle Detection and Imaging


Book Description

The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.




Interaction of Particles and Radiation with Matter


Book Description

This book is organized into fourteen lectures on modern atomic and nuclear physics. It begins with a concise introduction on the constituents of matter (elementary particles, atomic nuclei, atoms and molecules) and then focuses on the interaction of particles and radiation with matter. The lectures each range from physical fundamentals to current topics in subatomic and atomic research, thus making links to modern applications. Currently important topics such as channeling, the interaction between molecular ions and matter, and muon-catalyzed fusion are also discussed. The text is suitable as an introduction for graduate students and as a reference for scientists.




Interaction of Radiation with Matter


Book Description

Interaction of Radiation with Matter focuses on the physics of the interactions of ionizing radiation in living matter and the Monte Carlo simulation of radiation tracks. Clearly progressing from an elementary level to the state of the art, the text explores the classical physics of track description as well as modern aspects based on condensed mat




Principles of Radiation Interaction in Matter and Detection


Book Description

This book, like its first edition, addresses the fundamental principles of interaction between radiation and matter and the principle of particle detectors in a wide scope of fields, from low to high energy, including space physics and the medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, and performance and optimization of detectors. In this second edition, new sections dedicated to the following topics are included: space and high-energy physics radiation environment, non-ionizing energy loss (NIEL), displacement damage in silicon devices and detectors, single event effects, detection of slow and fast neutrons with silicon detectors, solar cells, pixel detectors, and additional material for dark matter detectors. This book will benefit graduate students and final-year undergraduates as a reference and supplement for courses in particle, astroparticle, and space physics and instrumentation. A part of it is directed toward courses in medical physics. The book can also be used by researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation.




Particle Physics Reference Library


Book Description

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access




An Introduction to the Physics of Nuclear Medicine


Book Description

The complexity and vulnerability of the human body has driven the development of a diverse range of diagnostic and therapeutic techniques in modern medicine. The Nuclear Medicine procedures of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Radionuclide Therapy are well-established in clinical practice and are founded upon the principles of radiation physics. This book will offer an insight into the physics of nuclear medicine by explaining the principles of radioactivity, how radionuclides are produced and administered as radiopharmaceuticals to the body and how radiation can be detected and used to produce images for diagnosis. The treatment of diseases such as thyroid cancer, hyperthyroidism and lymphoma by radionuclide therapy will also be explored.




Nuclear Physics


Book Description

The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.




Particles and Nuclei


Book Description

The fourth edition includes new developments, in particular a new section on the double beta decay including a discussion of the possibility of a neutrinoless decay and its implications for the standard model.




Nuclear Physics


Book Description

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.