Particles and Nuclei


Book Description

This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modem astrophysics and cosmology. The seventh revised and extended edition includes new material, in particular the experimental verification of the Higgs particle at the LHC, recent results in neutrino physics, the violation of CP-symmetry in the decay of neutral B-mesons, the experimental investigations of the nucleon's spin structure and outstanding results of the HERA experiments in deep-inelastic electron- and positron-proton scattering. The concise text is based on lectures held at the University of Heidelberg and includes numerous exercises with worked answers. It has been translated into several languages and has become a standard reference for advanced undergraduate and graduate courses.




Particles and Nuclei


Book Description

The fourth edition includes new developments, in particular a new section on the double beta decay including a discussion of the possibility of a neutrinoless decay and its implications for the standard model.










Constituents of Matter


Book Description

Originally published as part of the renowned Bergmann-Schaefer textbook series on experimental physics, this volume fills an important void by providing a thorough treatment of the basic: atoms, molecules, nuclei, and particles. Written by experimentalists, it forms a unique compendium of our practical knowledge of the basic elements While keeping all of the rigor necessary for a clean treatment, the authors go beyond theory and describe major experimental results that give readers a clear view of the practical side of nature.




Introduction To Nuclear And Particle Physics (2nd Edition)


Book Description

The original edition of Introduction to Nuclear and Particle Physics was used with great success for single-semester courses on nuclear and particle physics offered by American and Canadian universities at the undergraduate level. It was also translated into German, and used overseas. Being less formal but well-written, this book is a good vehicle for learning the more intuitive rather than formal aspects of the subject. It is therefore of value to scientists with a minimal background in quantum mechanics, but is sufficiently substantive to have been recommended for graduate students interested in the fields covered in the text.In the second edition, the material begins with an exceptionally clear development of Rutherford scattering and, in the four following chapters, discusses sundry phenomenological issues concerning nuclear properties and structure, and general applications of radioactivity and of the nuclear force. This is followed by two chapters dealing with interactions of particles in matter, and how these characteristics are used to detect and identify such particles. A chapter on accelerators rounds out the experimental aspects of the field. The final seven chapters deal with elementary-particle phenomena, both before and after the realization of the Standard Model. This is interspersed with discussion of symmetries in classical physics and in the quantum domain, bringing into full focus the issues concerning CP violation, isotopic spin, and other symmetries. The final three chapters are devoted to the Standard Model and to possibly new physics beyond it, emphasizing unification of forces, supersymmetry, and other exciting areas of current research.The book contains several appendices on related subjects, such as special relativity, the nature of symmetry groups, etc. There are also many examples and problems in the text that are of value in gauging the reader's understanding of the material.




Introduction to the Physics of Nuclei and Particles


Book Description

This textbook provides an up-to-date introduction to nuclear and particle physics and is aimed at upper-level undergraduate students with a basic knowledge of quantum mechanics.




Elements Of Nuclei


Book Description

In the present volume, Phillip J. Siemens, who has been a seminal contributor to our understanding of the nucleus as a many-body system, and his able collabourator, Aksel S. Jensen, introduce graduate students and colleagues in other fields to the basic concepts of nuclear physics in a way which connects clearly the methods of nuclear physics with those of condensed matter, atomic, and particle physics. Their book thus provides a lucid introduction to the key facts and concepts of nuclei, including many of the most recent developments, while emphasizing the similarities and the differences between the behaviour of nuclei, atoms, elementary particles, and condensed matter, It should thus prove useful, not only as a text for an introductory graduate course in nuclear physics, but as a reference book for all scientists interested in a unified picture of our understanding of physical phenomena associated with many-body systems.




Particles and Nuclei


Book Description

The Model Hamiltonian in Superconductivity Theory.- The Self-consistent-Field Method in Nuclear Theory.- Collective Acceleration of Ions.- Leptonic Hadron Decays.- Three-Quasiparticle States in Deformed Nuclei with Mass Numbers between 150 and 190.- Fundamental Electromagnetic Properties of the Neutron.




Nuclear and Particle Physics


Book Description

Updated and expanded edition of this well-known Physics textbook provides an excellent Undergraduate introduction to the field This new edition of Nuclear and Particle Physics continues the standards established by its predecessors, offering a comprehensive and highly readable overview of both the theoretical and experimental areas of these fields. The updated and expanded text covers a very wide range of topics in particle and nuclear physics, with an emphasis on the phenomenological approach to understanding experimental data. It is one of the few publications currently available that gives equal treatment to both fields, while remaining accessible to undergraduates. Early chapters cover basic concepts of nuclear and particle physics, before describing their respective phenomenologies and experimental methods. Later chapters interpret data through models and theories, such as the standard model of particle physics, and the liquid drop and shell models of nuclear physics, and also discuss many applications of both fields. The concluding two chapters deal with practical applications and outstanding issues, including extensions to the standard model, implications for particle astrophysics, improvements in medical imaging, and prospects for power production. There are a number of useful appendices. Other notable features include: New or expanded coverage of developments in relevant fields, such as the discovery of the Higgs boson, recent results in neutrino physics, research to test theories beyond the standard model (such as supersymmetry), and important technical advances, such as Penning traps used for high-precision measurements of nuclear masses. Practice problems at the end of chapters (excluding the last chapter) with solutions to selected problems provided in an appendix, as well as an extensive list of references for further reading. Companion website with solutions (odd-numbered problems for students, all problems for instructors), PowerPoint lecture slides, and other resources. As with previous editions, the balanced coverage and additional resources provided, makes Nuclear and Particle Physics an excellent foundation for advanced undergraduate courses, or a valuable general reference text for early graduate studies.