Numerical Analysis of One-dimensional Waves in Generalized Thermoelasticity


Book Description

"Classical thermoelasticity theory is based on Fourier's Law of heat conduction, which, when combined with the other fundamental field equations, leads to coupled hyperbolic-parabolic governing equations. These equations imply that thermal effects are to be felt instantaneously, far away from the external thermomechanieal load. Therefore, this theory admits infinite speeds of propagation of thermoelastic disturbances. This paradox becomes especially evident in problems involving very short time intervals, or high rates. of heat flux. Since infinite wave speeds are physically unrealistic in some situations, and since experiments have shown the existence of wavetype thermoelastic interactions, like in the observation of thermal pulses in dielectric crystals, "generalized" thermoelasticity theories have been developed. This thesis concentrates on one generalized thermoelasticity theory, proposed by Green and Lindsay, in which a generalized thermoelastic coupling constant, e, and two relaxation times, t0 and t, account for finite speed thermoelastic waves . A numerical analysis of an exact analytical solution, involving an instantaneous plane source of heat in an infinite body, is performed. The analysis reveals two finite speed wave fronts for each of the four fields: displacement, stress, temperature, and heat flux. The results are complimentary to previous analysis, and improve upon them, because a large range of parameters is involved, and the exact solution to the problem has been used."--Abstract.




Thermoelasticity with Finite Wave Speeds


Book Description

A unique monograph in a fast developing field of generalized thermoelasticity, an area of active research in continuum mechanics, focusing on thermoelasticity governed by hyperbolic equations, rather than on a wide range of continuum theories.







Heat Waves


Book Description

This book surveys significant modern contributions to the mathematical theories of generalized heat wave equations. The first three chapters form a comprehensive survey of most modern contributions also describing in detail the mathematical properties of each model. Acceleration waves and shock waves are the focus in the next two chapters. Numerical techniques, continuous data dependence, and spatial stability of the solution in a cylinder, feature prominently among other topics treated in the following two chapters. The final two chapters are devoted to a description of selected applications and the corresponding formation of mathematical models. Illustrations are taken from a broad range that includes nanofluids, porous media, thin films, nuclear reactors, traffic flow, biology, and medicine, all of contemporary active technological importance and interest. This book will be of value to applied mathematicians, theoretical engineers and other practitioners who wish to know both the theory and its relevance to diverse applications.










Thermal Stresses—Advanced Theory and Applications


Book Description

This is an advanced modern textbook on thermal stresses. It serves a wide range of readers, in particular, graduate and postgraduate students, scientists, researchers in various industrial and government institutes, and engineers working in mechanical, civil, and aerospace engineering. This volume covers diverse areas of applied mathematics, continuum mechanics, stress analysis, and mechanical design. This work treats a number of topics not presented in other books on thermal stresses, for example: theory of coupled and generalized thermoelasticity, finite and boundary element method in generalized thermoelasticity, thermal stresses in functionally graded structures, and thermal expansions of piping systems. The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic knowledge on the part of the reader is expected in classical mechanics, stress analysis, and mathematics, including vector and cartesian tensor analysis. This 2nd enhanced edition includes a new chapter on Thermally Induced Vibrations. The method of stiffness is added to Chapter 7. The variational principle for the Green-Lindsay and Green-Naghdi models have been added to Chapter 2 and equations of motion and compatibility equations in spherical coordinates to Chapter 3. Additional problems at the end of chapters were added.










Handbook of Differential Equations: Evolutionary Equations


Book Description

This book contains several introductory texts concerning the main directions in the theory of evolutionary partial differential equations. The main objective is to present clear, rigorous, and in depth surveys on the most important aspects of the present theory. The table of contents includes: W.Arendt: Semigroups and evolution equations: Calculus, regularity and kernel estimates A.Bressan: The front tracking method for systems of conservation laws E.DiBenedetto, J.M.Urbano,V.Vespri: Current issues on singular and degenerate evolution equations; L.Hsiao, S.Jiang: Nonlinear hyperbolic-parabolic coupled systems A.Lunardi: Nonlinear parabolic equations and systems D.Serre:L1-stability of nonlinear waves in scalar conservation laws B.Perthame:Kinetic formulations of parabolic and hyperbolic PDE’s: from theory to numerics