Convective Heat and Mass Transfer in Rotating Disk Systems


Book Description

The book is devoted to investigation of a series of problems of convective heat and mass transfer in rotating-disk systems. Such systems are widespread in scienti?c and engineering applications. As examples from the practical area, one can mention gas turbine and computer engineering, disk brakes of automobiles, rotating-disk air cleaners, systems of microclimate, extractors, dispensers of liquids, evaporators, c- cular saws, medical equipment, food process engineering, etc. Among the scienti?c applications, it is necessary to point out rotating-disk electrodes used for experim- tal determination of the diffusion coef?cient in electrolytes. The system consisting of a ?xed disk and a rotating cone that touches the disk by its vertex is widely used for measurement of the viscosity coef?cient of liquids. For time being, large volume of experimental and computational data on par- eters of ?uid ?ow, heat and mass transfer in different types of rotating-disk systems have been accumulated, and different theoretical approaches to their simulation have been developed. This obviously causes a need of systematization and generalization of these data in a book form.




Convective Heat and Mass Transfer


Book Description

Convective Heat and Mass Transfer, Second Edition, is ideal for the graduate level study of convection heat and mass transfer, with coverage of well-established theory and practice as well as trending topics, such as nanoscale heat transfer and CFD. It is appropriate for both Mechanical and Chemical Engineering courses/modules.




Handbook of Thermal Science and Engineering


Book Description

This Handbook provides researchers, faculty, design engineers in industrial R&D, and practicing engineers in the field concise treatments of advanced and more-recently established topics in thermal science and engineering, with an important emphasis on micro- and nanosystems, not covered in earlier references on applied thermal science, heat transfer or relevant aspects of mechanical/chemical engineering. Major sections address new developments in heat transfer, transport phenomena, single- and multiphase flows with energy transfer, thermal-bioengineering, thermal radiation, combined mode heat transfer, coupled heat and mass transfer, and energy systems. Energy transport at the macro-scale and micro/nano-scales is also included. The internationally recognized team of authors adopt a consistent and systematic approach and writing style, including ample cross reference among topics, offering readers a user-friendly knowledgebase greater than the sum of its parts, perfect for frequent consultation. The Handbook of Thermal Science and Engineering is ideal for academic and professional readers in the traditional and emerging areas of mechanical engineering, chemical engineering, aerospace engineering, bioengineering, electronics fabrication, energy, and manufacturing concerned with the influence thermal phenomena.




VDI Heat Atlas


Book Description

For more than 50 years, the Springer VDI Heat Atlas has been an indispensable working means for engineers dealing with questions of heat transfer. Featuring 50% more content, this new edition covers most fields of heat transfer in industrial and engineering applications. It presents the interrelationships between basic scientific methods, experimental techniques, model-based analysis and their transfer to technical applications.







Modelling of Convective Heat and Mass Transfer in Rotating Flows


Book Description

This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analytical solutions. The book will be a valuable read for research experts and practitioners in the field of heat and mass transfer.




Gas Turbine Heat Transfer and Cooling Technology, Second Edition


Book Description

A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.




Heat Transfer and Fluid Flow in Minichannels and Microchannels


Book Description

&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.