Numerical Geometry of Images


Book Description

Numerical Geometry of Images examines computational methods and algorithms in image processing. It explores applications like shape from shading, color-image enhancement and segmentation, edge integration, offset curve computation, symmetry axis computation, path planning, minimal geodesic computation, and invariant signature calculation. In addition, it describes and utilizes tools from mathematical morphology, differential geometry, numerical analysis, and calculus of variations. Graduate students, professionals, and researchers with interests in computational geometry, image processing, computer graphics, and algorithms will find this new text / reference an indispensable source of insight of instruction.




Numerical Geometry of Non-Rigid Shapes


Book Description

Deformable objects are ubiquitous in the world surrounding us, on all levels from micro to macro. The need to study such shapes and model their behavior arises in a wide spectrum of applications, ranging from medicine to security. In recent years, non-rigid shapes have attracted growing interest, which has led to rapid development of the field, where state-of-the-art results from very different sciences - theoretical and numerical geometry, optimization, linear algebra, graph theory, machine learning and computer graphics, to mention several - are applied to find solutions. This book gives an overview of the current state of science in analysis and synthesis of non-rigid shapes. Everyday examples are used to explain concepts and to illustrate different techniques. The presentation unfolds systematically and numerous figures enrich the engaging exposition. Practice problems follow at the end of each chapter, with detailed solutions to selected problems in the appendix. A gallery of colored images enhances the text. This book will be of interest to graduate students, researchers and professionals in different fields of mathematics, computer science and engineering. It may be used for courses in computer vision, numerical geometry and geometric modeling and computer graphics or for self-study.




Geometric Curve Evolution and Image Processing


Book Description

In image processing, "motions by curvature" provide an efficient way to smooth curves representing the boundaries of objects. In such a motion, each point of the curve moves, at any instant, with a normal velocity equal to a function of the curvature at this point. This book is a rigorous and self-contained exposition of the techniques of "motion by curvature". The approach is axiomatic and formulated in terms of geometric invariance with respect to the position of the observer. This is translated into mathematical terms, and the author develops the approach of Olver, Sapiro and Tannenbaum, which classifies all curve evolution equations. He then draws a complete parallel with another axiomatic approach using level-set methods: this leads to generalized curvature motions. Finally, novel, and very accurate, numerical schemes are proposed allowing one to compute the solution of highly degenerate evolution equations in a completely invariant way. The convergence of this scheme is also proved.




Numerical Methods for Image Registration


Book Description

This text provides an introduction to image registration with particular emphasis on numerical methods in medical imaging. Designed for researchers in industry and academia, it should also be a suitable study guide for graduate mathematicians, computer scientists and medical physicists.




Geometric Modeling and Mesh Generation from Scanned Images


Book Description

Cutting-Edge Techniques to Better Analyze and Predict Complex Physical Phenomena Geometric Modeling and Mesh Generation from Scanned Images shows how to integrate image processing, geometric modeling, and mesh generation with the finite element method (FEM) to solve problems in computational biology, medicine, materials science, and engineering. Based on the author’s recent research and course at Carnegie Mellon University, the text explains the fundamentals of medical imaging, image processing, computational geometry, mesh generation, visualization, and finite element analysis. It also explores novel and advanced applications in computational biology, medicine, materials science, and other engineering areas. One of the first to cover this emerging interdisciplinary field, the book addresses biomedical/material imaging, image processing, geometric modeling and visualization, FEM, and biomedical and engineering applications. It introduces image-mesh-simulation pipelines, reviews numerical methods used in various modules of the pipelines, and discusses several scanning techniques, including ones to probe polycrystalline materials. The book next presents the fundamentals of geometric modeling and computer graphics, geometric objects and transformations, and curves and surfaces as well as two isocontouring methods: marching cubes and dual contouring. It then describes various triangular/tetrahedral and quadrilateral/hexahedral mesh generation techniques. The book also discusses volumetric T-spline modeling for isogeometric analysis (IGA) and introduces some new developments of FEM in recent years with applications.




Multiple View Geometry in Computer Vision


Book Description

A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.




Numerical Algorithms


Book Description

Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig




Handbook of Numerical Analysis


Book Description




Computational Geometry


Book Description

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2




Geometric Methods in Signal and Image Analysis


Book Description

This comprehensive guide offers a new approach for developing and implementing robust computational methodologies that uncover the key geometric and topological information from signals and images. With the help of detailed real-world examples and applications, readers will learn how to solve complex signal and image processing problems in fields ranging from remote sensing to medical imaging, bioinformatics, robotics, security, and defence. With an emphasis on intuitive and application-driven arguments, this text covers not only a range of methods in use today, but also introduces promising new developments for the future, bringing the reader up-to-date with the state of the art in signal and image analysis. Covering basic principles as well as advanced concepts and applications, and with examples and homework exercises, this is an invaluable resource for graduate students, researchers, and industry practitioners in a range of fields including signal and image processing, biomedical engineering, and computer graphics.