Godunov-type Schemes


Book Description

Godunov-type schemes appear as good candidates for the next generation of commercial modelling software packages, the capability of which to handle discontinuous solution will be a basic requirement. It is in the interest of practising engineers and developers to be familiar with the specific features of discontinuous wave propagation problems and to be aware of the possibilities offered by Godunov-type schemes for their solution. This book aims to present the principles of such schemes in a way that is easily understandable to practising engineers.The features of hyperbolic conservation laws and their solutions are presented in the first two chapters. The principles of Godunov-type schemes are outlined in a third chapter. Chapters 4 and 5 cover the application of the original Godunov scheme to scalar laws and to hyperbolic systems of conservation laws respectively. Chapter 6 is devoted to higher-order schemes in one dimension of space. The design of such a scheme is described for the general case and applied to some well-known schemes such as the MUSCL and PPM schemes. Chapter 7 focuses on multidimensional problems. The classical alternate directions and finite volume approaches are presented together with the wave splitting technique that is described in depth with an application to two-dimensional systems. Chapter 8 deals with large-time step algorithms. These include front tracking-based methods, explicit-implicit techniques and the time-line interpolation technique. Three appendices provide notions on accuracy and stability issues, Riemann solvers and the user instructions for the computational codes provided in the enclosed CD-ROM.




Wave Propagation in Fluids


Book Description

This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite difference-, finite volume- and finite element-based numerical methods (including discontinuous Galerkin techniques) are covered and applied to various physical fields. Additional chapters include the treatment of geometric source terms, as well as direct and adjoint sensitivity modeling for hyperbolic conservation laws. A concluding chapter is devoted to practical recommendations to the modeler. Application exercises with on-line solutions are proposed at the end of the chapters.




Computational Techniques for Multiphase Flows


Book Description

Computational Techniques for Multiphase Flows, Second Edition, provides the latest research and theories covering the most popular multiphase flows The book begins with an overview of the state-of-the-art techniques for multiple numerical methods in handling multiphase flow, compares them, and finally highlights their strengths and weaknesses. In addition, it covers more straightforward, conventional theories and governing equations in early chapters, moving on to the more modern and complex computational models and tools later in the book. It is therefore accessible to those who may be new to the subject while also featuring topics of interest to the more experienced researcher. Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for understanding fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, automotive, energy, aerospace and pharmaceutical industries. This revised edition is an ideal reference for scientists, MSc students and chemical and mechanical engineers in these areas. - Includes updated chapters in addition to a brand-new section on granular flows. - Features novel solution methods for multiphase flow, along with recent case studies. - Explains how and when to use the featured technique and how to interpret the results and apply them to improving applications.




Gasdynamic Aspects of Two-Phase Flow


Book Description

Here, the author, a researcher of outstanding experience in this field, summarizes and combines the recent results and findings on advanced two-phase flow modeling and numerical methods otherwise dispersed in various journals, while also providing explanations for numerical and modeling techniques previously not covered by other books. The resulting systematic and comprehensive monograph is unrivalled in its kind, serving as a reference for both researchers and engineers working in engineering as well as in environmental science.




Numerical Methods for Conservation Laws


Book Description

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.










Computational Methods for Multiphase Flow


Book Description

Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.