Nutrient Cycling in Forest Ecosystems


Book Description

The long-term productivity of forest ecosystems depends on the cycling of nutrients. The effect of carbon dioxide fertilization on forest productivity may ultimately be limited by the rate of nutrient cycling. Contemporary and future disturbances such as climatic warming, N-deposition, deforestation, short rotation sylviculture, fire (both wild and controlled), and the invasion of exotic species all place strains on the integrity of ecosystem nutrient cycling. Global differences in climate, soils, and species make it difficult to extrapolate even a single important study worldwide. Despite advances in the understanding of nutrient cycling and carbon production in forests, many questions remain. The chapters in this volume reflect many contemporary research priorities. The thirteen studies in this volume are arranged in the following subject groups: • N and P resorption from foliage worldwide, along chronosequences and along elevation gradients; • Litter production and decomposition; • N and P stoichiometry as affected by N deposition, geographic gradients, species changes, and ecosystem restoration; • Effects of N and P addition on understory biomass, litter, and soil; • Effects of burning on soil nutrients; • Effects of N addition on soil fauna.




Nutrient Cycling in Tropical Forest Ecosystems


Book Description

Brings together much of the recent literature on nutrient cycling due to conversion of forests to croplands, pastures, and plantation forests. It explains why nutrients are often very critical in tropical humid ecosystems and discusses principles that can guide land managers to conserve nutrients and sustain productivity.




Atmospheric Deposition and Forest Nutrient Cycling


Book Description

Over the past decade there has been considerable interest in the effects of atmospheric deposition on forest ecosystems. This volume summarizes the results of the Integrated Forest Study (IFS), one of the most comprehensive research programs conducted. It involved intensive measurements of deposition and nutrient cycling at seventeen diverse forested sites in the United States, Canada, and Norway. The IFS is unique as an applied research project in its complete, ecosystem-level evaluation of nutrient budgets, including significant inputs, outputs, and internal fluxes. It is also noteworthy as a more basic investigation of ecosystem nutrient cycling because of its incorporation of state-of-the-art methods, such as quantifying dry and cloud water deposition. Most significantly, the IFS data was used to test several general hypotheses regarding atmospheric deposition and its effects. The data sets also allow for far-reaching conclusions because all sites were monitored over the same period using comparable instruments and standardized protocols.




Nutrient Cycling and Plant Nutrition in Forest Ecosystems


Book Description

This book is a printed edition of the Special Issue "Urban and Periurban Forest Diversity and Ecosystem Services" that was published in Forests




Nutrient Cycling in Forest Ecosystems


Book Description

The long-term productivity of forest ecosystems depends on the cycling of nutrients. The effect of carbon dioxide fertilization on forest productivity may ultimately be limited by the rate of nutrient cycling. Contemporary and future disturbances such as climatic warming, N-deposition, deforestation, short rotation sylviculture, fire (both wild and controlled), and the invasion of exotic species all place strains on the integrity of ecosystem nutrient cycling. Global differences in climate, soils, and species make it difficult to extrapolate even a single important study worldwide. Despite advances in the understanding of nutrient cycling and carbon production in forests, many questions remain. The chapters in this volume reflect many contemporary research priorities. The thirteen studies in this volume are arranged in the following subject groups: • N and P resorption from foliage worldwide, along chronosequences and along elevation gradients; • Litter production and decomposition; • N and P stoichiometry as affected by N deposition, geographic gradients, species changes, and ecosystem restoration; • Effects of N and P addition on understory biomass, litter, and soil; • Effects of burning on soil nutrients; • Effects of N addition on soil fauna.




Nutrient Uptake and Cycling in Forest Ecosystems


Book Description

From the research results and discussions presented in this book it becomes clear that a profound understanding of the various interrelationships of the nutritional aspects allows the implementation of specific management strategies to improve stability and productivity of forest ecosystems. In particular the effects of environmental changes as related to the impacts of air pollution, global change and land use on nutrient uptake and cycling processes in forest ecosystems are dealt with in detail. The book is divided into six main issues and each topic contains reviews as well as selected results of recent studies.




Nutrient Cycling in Terrestrial Ecosystems


Book Description

This book presents a comprehensive overview of nutrient cycling processes and their importance for plant growth and ecosystem sustainability. The book combines fundamental scientific studies and devised practical approaches. It contains contributions of leading international authorities from various disciplines resulting in multidisciplinary approaches, and all chapters have been carefully reviewed. This volume will support scientists and practitioners alike.




Forest Ecosystems: Nutrient Uptake and Cycling


Book Description

Forest ecosystem is a self-sustaining functional unit of nature wherein living organisms interact among themselves and with the surrounding physical environment. It is a type of terrestrial ecosystem. Both biotic and abiotic elements such as soil, trees, insects, animals, birds and humans are a part of the forest ecosystem. There are four major components of a forest ecosystem, namely, productivity, decomposition, energy flow, and nutrient uptake and cycling. Nutrient cycle refers to a system that involves the movement of substances and energy between living organisms and non-living elements of the environment. This happens when plants and animals ingest nutrients present in the soil, which are then released back into the ecosystem after they die and decompose. Nutrient cycling is crucial for meeting the nutrient supply of plants in the forest and increasing productivity of forests. This book unfolds the important aspects of nutrient uptake and cycling in forest ecosystems, which will be crucial to develop a complete understanding of the subject matter. It is a resource guide for experts as well as students.




Forest Ecosystems


Book Description

2009 Outstanding Academic Title, Choice This acclaimed textbook is the most comprehensive available in the field of forest ecology. Designed for advanced students of forest science, ecology, and environmental studies, it is also an essential reference for forest ecologists, foresters, and land managers. The authors provide an inclusive survey of boreal, temperate, and tropical forests with an emphasis on ecological concepts across scales that range from global to landscape to microscopic. Situating forests in the context of larger landscapes, they reveal the complex patterns and processes observed in tree-dominated habitats. The updated and expanded second edition covers • Conservation • Ecosystem services • Climate change • Vegetation classification • Disturbance • Species interactions • Self-thinning • Genetics • Soil influences • Productivity • Biogeochemical cycling • Mineralization • Effects of herbivory • Ecosystem stability




Wood Ant Ecology and Conservation


Book Description

Wood ants play an ecologically dominant and conspicuous role in temperate boreal forests, making a keystone contribution to woodland ecosystem functions and processes. Wood ant taxonomy and global distributions set the scene for this text's exploration of wood ants as social insects, examining their flexible social structures, genetics, population ecology, and behaviour, from nest-mate recognition to task allocation. Wood ants' interactions with their environment and with other organisms are essential to their success: competition, predation and mutualism are described and analysed. Bringing together the expertise of ecological researchers and conservation practitioners, this book provides practical and theoretical advice about sampling and monitoring these insects, and outlines the requirements for effective conservation. This is an indispensable resource for wood ant researchers, entomologists, conservationists and ecological consultants, as well as anyone interested in social insects, keystone species and the management and conservation of forest ecosystems.