Tame Topology and O-minimal Structures


Book Description

These notes give a self-contained treatment of the theory of o-minimal structures from a geometric and topological viewpoint, assuming only rudimentary algebra and analysis. This book should be of interest to model theorists, analytic geometers and topologists.




O-minimal Structures


Book Description




O-Minimality and Diophantine Geometry


Book Description

This book brings the researcher up to date with recent applications of mathematical logic to number theory.




Lecture Notes on O-Minimal Structures and Real Analytic Geometry


Book Description

​This volume was produced in conjunction with the Thematic Program in o-Minimal Structures and Real Analytic Geometry, held from January to June of 2009 at the Fields Institute. Five of the six contributions consist of notes from graduate courses associated with the program: Felipe Cano on a new proof of resolution of singularities for planar analytic vector fields; Chris Miller on o-minimality and Hardy fields; Jean-Philippe Rolin on the construction of o-minimal structures from quasianalytic classes; Fernando Sanz on non-oscillatory trajectories of vector fields; and Patrick Speissegger on pfaffian sets. The sixth contribution, by Antongiulio Fornasiero and Tamara Servi, is an adaptation to the nonstandard setting of A.J. Wilkie's construction of o-minimal structures from infinitely differentiable functions. Most of this material is either unavailable elsewhere or spread across many different sources such as research papers, conference proceedings and PhD theses. This book will be a useful tool for graduate students or researchers from related fields who want to learn about expansions of o-minimal structures by solutions, or images thereof, of definable systems of differential equations. ​




Model Theory, Algebra, and Geometry


Book Description

Leading experts survey the connections between model theory and semialgebraic, subanalytic, p-adic, rigid and diophantine geometry.




A Guide to NIP Theories


Book Description

The first book to introduce the rapidly developing subject of NIP theories, for students and researchers in model theory.




Point-Counting and the Zilber–Pink Conjecture


Book Description

Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on the André–Oort and Zilber–Pink conjectures. The results combine ideas close to transcendence theory with the strong tameness properties of sets that are definable in an o-minimal structure, and thus the material treated connects ideas in model theory, transcendence theory, and arithmetic. This book describes the counting results and their applications along with their model-theoretic and transcendence connections. Core results are presented in detail to demonstrate the flexibility of the method, while wider developments are described in order to illustrate the breadth of the diophantine conjectures and to highlight key arithmetical ingredients. The underlying ideas are elementary and most of the book can be read with only a basic familiarity with number theory and complex algebraic geometry. It serves as an introduction for postgraduate students and researchers to the main ideas, results, problems, and themes of current research in this area.




Mathematical Logic in Asia


Book Description

This volume is devoted to the main areas of mathematical logic and applications to computer science. There are articles on weakly o-minimal theories, algorithmic complexity of relations, models within the computable model theory, hierarchies of randomness tests, computable numberings, and complexity problems of minimal unsatisfiable formulas. The problems of characterization of the deduction-detachment theorem, o 1 -induction, completeness of Leoniewski''s systems, and reduction calculus for the satisfiability problem are also discussed. The coverage includes the answer to Kanovei''s question about the upper bound for the complexity of equivalence relations by convergence at infinity for continuous functions. The volume also gives some applications to computer science such as solving the problems of inductive interference of languages from the full collection of positive examples and some negative data, the effects of random negative data, methods of formal specification and verification on the basis of model theory and multiple-valued logics, interval fuzzy algebraic systems, the problems of information exchange among agents on the base topological structures, and the predictions provided by inductive theories. Sample Chapter(s). Chapter 1: Another Characterization of the Deduction-Detachment Theorem (535 KB). Contents: Another Characterization of the Deduction-Detachment Theorem (S V Babyonyshev); On Behavior of 2-Formulas in Weakly o-Minimal Theories (B S Baizhanov & B Sh Kulpeshov); Arithmetic Turing Degrees and Categorical Theories of Computable Models (E Fokina); Negative Data in Learning Languages (S Jain & E Kinber); Effective Cardinals in the Nonstandard Universe (V Kanovei & M Reeken); Model-Theoretic Methods of Analysis of Computer Arithmetic (S P Kovalyov); The Functional Completeness of Leoniewski''s Systems (F Lepage); Hierarchies of Randomness Tests (J Reimann & F Stephan); Intransitive Linear Temporal Logic Based on Integer Numbers, Decidability, Admissible Logical Consecutions (V V Rybakov); The Logic of Prediction (E Vityaev); Conceptual Semantic Systems Theory and Applications (K E Wolff); Complexity Results on Minimal Unsatisfiable Formulas (X Zhao); and other papers. Readership: Researchers in mathematical logic and algebra, computer scientists in artificial intelligence and fuzzy logic."




Hilbert's Fifth Problem and Related Topics


Book Description

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.




Foliations and the Geometry of 3-Manifolds


Book Description

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.