Ocean Variability & Acoustic Propagation


Book Description

Fifteen years ago NATO organised a conference entitled 'Ocean Acoustic Modelling'. Many of its participants were again present at this variability workshop. One such participant. in concluding his 1975 paper, quoted the following from a 1972 literature survey: ' ... history presents a sad lack of communications between acousticians and oceanographers' Have we done any better in the last 15 years? We believe so, but only moderately. There is still a massive underdeveloped potential for acousticians and oceanographers to make significant progress together. Currently, the two camps talk together insufficiently even to avoid simple misun derstandings. such as those in Table 1. Table 1 Ocsanographic and acoustic jargon (from an idea by Pol/ardi Jargon Oceanographic use Acoustic use dbordB decibar (depth in m) decibel (energy level) PE primitive equations parabolic equations convergence zone converging currents converging rays (downwelling water) (high energy density) front thermohaline front wave, ray or time front speed water current speed sound propagation speed 1 The list goes on.




Springer Handbook of Acoustics


Book Description

This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.







Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance


Book Description

The limiting influence of the environment on sonar has long been recognised as a major challenge to science and technology. As the area of interest shifts towards the lit toral, environmental influences become dominant both in time and space. The manyfold challenges encompass prediction, measurement, assessment and adaptive responses to maximize the effectiveness of systems. Although MCM and ASW activities are dom inated in different ways and scales by the environment, both warfare areas have had to consider the significantly changing requirements posed by operations in the littoraL The fundamental scientific issues involved in developing models relating acoustics to the environment are matched in difficulty by the need for data for their validation and eventual practical use for prediction. In many instances the need is for on-line adaptation of systems to changing circumstances whilst other needs are for the Ionger term planning activities. This book and the attached full-color CD are the proceedings of a conference organ ised by the SACLANT Undersea Research Centre, held at Villa Marigola, Lerici, Italy, on 16-20 September 2002. The fundamental problems associated with environmental 1 variability and sonar were explored at a previous SACLANTCEN conference in 1990. These problems have not gone away but, on the one hand are exaggerated by the move to the littoral and on the other hand, are open to treatrnent in new ways that advances in technology and computer power allow.







Ocean Noise and Marine Mammals


Book Description

For the 119 species of marine mammals, as well as for some other aquatic animals, sound is the primary means of learning about the environment and of communicating, navigating, and foraging. The possibility that human-generated noise could harm marine mammals or significantly interfere with their normal activities is an issue of increasing concern. Noise and its potential impacts have been regulated since the passage of the Marine Mammal Protection Act of 1972. Public awareness of the issue escalated in 1990s when researchers began using high-intensity sound to measure ocean climate changes. More recently, the stranding of beaked whales in proximity to Navy sonar use has again put the issue in the spotlight. Ocean Noise and Marine Mammals reviews sources of noise in the ocean environment, what is known of the responses of marine mammals to acoustic disturbance, and what models exist for describing ocean noise and marine mammal responses. Recommendations are made for future data gathering efforts, studies of marine mammal behavior and physiology, and modeling efforts necessary to determine what the long- and short-term impacts of ocean noise on marine mammals.







Underwater Acoustic Modelling and Simulation


Book Description

Underwater Acoustic Modeling and Simulation examines the translation of our physical understanding of sound in the sea into mathematical models that can simulate acoustic propagation, noise and reverberation in the ocean. These models are used in a variety of research and operational applications to predict and diagnose the performance of complex s




Underwater Acoustic Modelling and Simulation, Third Edition


Book Description

Underwater Acoustic Modeling and Simulation examines the translation of our physical understanding of sound in the sea into mathematical models that can simulate acoustic propagation, noise and reverberation in the ocean. These models are used in a variety of research and operational applications to predict and diagnose the performance of complex sonar systems operating in the undersea environment. Previous editions of the book have provided invaluable guidance to sonar technologists, acoustical oceanographers and applied mathematicians in the selection and application of underwater acoustic models. Now that simulation is fast becoming an accurate, efficient and economical alternative to field-testing and at-sea training, this new edition will also provide useful guidance to systems engineers and operations analysts interested in simulating sonar performance. Guidelines for selecting and using available propagation, noise and reverberation models are highlighted. Specific examples of each type of model are discussed to illustrate model formulations, assumptions and algorithm efficiency. Instructive case studies demonstrate applications in sonar simulation.




Acoustic Signal Processing for Ocean Exploration


Book Description

Acoustic Signal Processing for Ocean Explortion has two major goals: (i) to present signal processing algorithms that take into account the models of acoustic propagation in the ocean and; (ii) to give a perspective of the broad set of techniques, problems, and applications arising in ocean exploration. The book discusses related issues and problems focused in model based acoustic signal processing methods. Besides addressing the problem of the propagation of acoustics in the ocean, it presents relevant acoustic signal processing methods like matched field processing, array processing, and localization and detection techniques. These more traditional contexts are herein enlarged to include imaging and mapping, and new signal representation models like time/frequency and wavelet transforms. Several applied aspects of these topics, such as the application of acoustics to fisheries, sea floor swath mapping by swath bathymetry and side scan sonar, autonomous underwater vehicles and communications in underwater are also considered.