Ocean Wave Group Analysis


Book Description

A computerized method for the identification of wave groups and determination of their properties from digital wave data was developed. Analysis was performed on 208 Southern California wave records. It was found that the number of waves in a group is independent of both the spectral peak period and the variance of the wave record. However, the amount of energy contained in wave groups relative to that in the record increases as the total energy of the record increases. Also, average group periods of greater than the spectral peak period are not uncommon. Both an increase in group energy relative to the wave record and also the number of waves in a group increase the possibility of obtaining an extreme wave height in a group relative to the significant wave height of the record. Finally, it is apparent that as the average group period approaches the spectral peak period of a record, all other highly dependent wave group properties take on their maximum values. (Author).




Ocean Waves


Book Description

Describes the stochastic method for ocean wave analysis - vital information for design and operation of ships.




Ocean Wave Modeling


Book Description

Early in 1979, a group of wave researchers proposed a wave model inter comparison study to clarify the interrelations existing among the various wave models which have been developed in past years for real-time wave forecasting, wave statistics compilations, or hindcast case studies. The idea was immediately welcomed by the wave modeling community, and, finally, nine wave modeling groups from the United States, Japan, and Europe participated in the exercise. The principal results of this work are presented here jointly by the Sea Wave Modeling Project (swAMP) Group (the members of which are listed in Appendix A). Descriptions of the models used in the study are given in Part II of this volume. A more complete documentation of the entire set of numerical experiments is given in Part 2 of the Sea Wave Modeling Project (SWAMP group, 1982). The main purpose of the intercomparison study was to test our present understanding of the physics of . wind-generated surface waves from the viewpoint of wave modeling. Specifically, we wished to clarify the basic interdependence between understanding the physics of surface waves, repre senting the physics numerically, and predicting quantitatively the detailed space-time evolution of a two-dimensional surface wave spectrum for a given wind field. It was not our intent to carry out a model competition. In this sense there were no winners or losers: all models could claim specific strong points, and all displayed weaknesses in some areas.




Wave Mechanics and Wave Loads on Marine Structures


Book Description

Wave Mechanics and Wave Loads on Marine Structures provides a new perspective on the calculation of wave forces on ocean structures, unifying the deterministic and probabilistic approaches to wave theory and combining the methods used in field and experimental measurement.Presenting his quasi-determinism (QD) theory and approach of using small-scale field experiments (SSFEs), author Paolo Boccotti simplifies the findings and techniques honed in his ground-breaking work to provide engineers and researchers with practical new methods of analysis. Including numerous worked examples and case studies, Wave Mechanics and Wave Loads on Marine Structures also discusses and provides useful FORTRAN programs, including a subroutine for calculating particle velocity and acceleration in wave groups, and programs for calculating wave loads on several kinds of structures. - Solves the conceptual separation of deterministic and stochastic approaches to wave theory seen in other resources through the application of quasi-determinism (QD) theory - Combines the distinct experimental activities of field measurements and wave tank experiment using small-scale field experiments (SSFEs) - Simplifies and applies the ground-breaking work and techniques of this leading expert in wave theory and marine construction







Water Wave Mechanics For Engineers And Scientists


Book Description

This book is intended as an introduction to classical water wave theory for the college senior or first year graduate student. The material is self-contained; almost all mathematical and engineering concepts are presented or derived in the text, thus making the book accessible to practicing engineers as well.The book commences with a review of fluid mechanics and basic vector concepts. The formulation and solution of the governing boundary value problem for small amplitude waves are developed and the kinematic and pressure fields for short and long waves are explored. The transformation of waves due to variations in depth and their interactions with structures are derived. Wavemaker theories and the statistics of ocean waves are reviewed. The application of the water particle motions and pressure fields are applied to the calculation of wave forces on small and large objects. Extension of the linear theory results to several nonlinear wave properties is presented. Each chapter concludes with a set of homework problems exercising and sometimes extending the material presented in the chapter. An appendix provides a description of nine experiments which can be performed, with little additional equipment, in most wave tank facilities.




Ocean Wave Data Analysis


Book Description




Water Wave Kinematics


Book Description

Water wave kinematics is a central field of study in ocean and coastal engineering. The wave forces on structures as well as sand erosion both on coastlines and in the ocean are to a large extent governed by the local distribution of velocities and accelerations of the water particles. Our knowledge of waves has generally been derived from measurements of the water surface elevations. The reason for this is that the surface elevations have been of primary interest and fairly cheap and reliable instruments have been developed for such measurements. The water wave kinematics has then been derived from the surface elevation information by various theories. However. the different theories for the calculation of water particle velocities and acceleration have turned out to give significant differences in the calculated responses of structures. In recent years new measurement techniques have made it possible to make accurate velocity measurements. Hence. the editors deemed it to be useful to bring together a group of experts working actively as researchers in the field of water wave kinematics. These experts included theoreticians as well as experimentalists on wave kinematics. It was also deemed useful to include experts on the response of structures to have their views from a structural engineering point of view on what information is really needed on water wave kinematics.




The Interaction of Ocean Waves and Wind


Book Description

This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.




Ocean Wave Dynamics


Book Description

Ocean Wave Dynamics is the most up-to-date book of its kind on the three main processes responsible for the generation and evolution of ocean waves: (i) atmospheric input from the wind, (ii) wave breaking and (iii) nonlinear interactions.Ocean waves are important for many reasons. They are the major environmental impact on in the design of coastal or offshore structures. Ocean waves are also fundamental to the processes of coastal flooding and beach erosion. They will play a major role in storm related coastal flooding which will rise in frequency as a result of sea level rise. Ocean waves are also an important part of the coupled ocean-atmosphere system. They determine the roughness of the ocean surface and hence have an impact on winds, fluxes of energy, gases and heat to the ocean and even the stability of ice sheets.Containing the latest research on ocean waves, it is a valuable resource for an overview of knowledge in this important field.Related Link(s)