Oeuvres Scientifiques / Collected Papers


Book Description

André Weil’s mathematical work has deeply influenced the mathematics of the twentieth century. Part of a three-volume set, this work collects his papers in chronological order and includes lengthy commentaries on many of the articles written by Weil himself.




Collected Papers


Book Description

This book collects the papers published by A. Borel from 1983 to 1999. About half of them are research papers, written on his own or in collaboration, on various topics pertaining mainly to algebraic or Lie groups, homogeneous spaces, arithmetic groups (L2-spectrum, automorphic forms, cohomology and covolumes), L2-cohomology of symmetric or locally symmetric spaces, and to the Oppenheim conjecture. Other publications include surveys and personal recollections (of D. Montgomery, Harish-Chandra, and A. Weil), considerations on mathematics in general and several articles of a historical nature: on the School of Mathematics at the Institute for Advanced Study, on N. Bourbaki and on selected aspects of the works of H. Weyl, C. Chevalley, E. Kolchin, J. Leray, and A. Weil. The book concludes with an essay on H. Poincaré and special relativity. Some comments on, and corrections to, a number of papers have also been added.




Oeuvres Scientifiques - Collected Papers I


Book Description

From the reviews "...All of Weil’s works except for books and lecture notes are compiled here, in strict chronological order for easy reference. But the value ... goes beyond the convenience of easy reference and accessibility. In the first place, these volumes contain several essays, letters, and addresses which were either published in obscure places (...) or not published at all. Even more valuable are the lengthy commentaries on many of the articles, written by Weil himself. These remarks serve as a guide, helping the reader place the papers in their proper context. Moreover, we have the rare opportunity of seeing a great mathematician in his later life reflecting on the development of his ideas and those of his contemporaries at various stages of his career. The sheer number of mathematical papers of fundamental significance would earn Weil’s Collected Papers a place in the library of a mathematician with an interest in number theory, algebraic geometry, representations theory, or related areas. The additional import of the mathematical history and culture in these volumes makes them even more essential." Neal Koblitz in Mathematical Reviews "...André Weil’s mathematical work has deeply influenced the mathematics of the twentieth century and the monumental (...) "Collected papers" emphasize this influence." O. Fomenko in Zentralblatt der Mathematik




A Classical Introduction to Modern Number Theory


Book Description

This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.




Doing Mathematics: Convention, Subject, Calculation, Analogy (2nd Edition)


Book Description

Doing Mathematics discusses some ways mathematicians and mathematical physicists do their work and the subject matters they uncover and fashion. The conventions they adopt, the subject areas they delimit, what they can prove and calculate about the physical world, and the analogies they discover and employ, all depend on the mathematics — what will work out and what won't. The cases studied include the central limit theorem of statistics, the sound of the shape of a drum, the connections between algebra and topology, and the series of rigorous proofs of the stability of matter. The many and varied solutions to the two-dimensional Ising model of ferromagnetism make sense as a whole when they are seen in an analogy developed by Richard Dedekind in the 1880s to algebraicize Riemann's function theory; by Robert Langlands' program in number theory and representation theory; and, by the analogy between one-dimensional quantum mechanics and two-dimensional classical statistical mechanics. In effect, we begin to see 'an identity in a manifold presentation of profiles,' as the phenomenologists would say.This second edition deepens the particular examples; it describe the practical role of mathematical rigor; it suggests what might be a mathematician's philosophy of mathematics; and, it shows how an 'ugly' first proof or derivation embodies essential features, only to be appreciated after many subsequent proofs. Natural scientists and mathematicians trade physical models and abstract objects, remaking them to suit their needs, discovering new roles for them as in the recent case of the Painlevé transcendents, the Tracy-Widom distribution, and Toeplitz determinants. And mathematics has provided the models and analogies, the ordinary language, for describing the everyday world, the structure of cities, or God's infinitude.




Anachronisms in the History of Mathematics


Book Description

Discover essays by leading scholars on the history of mathematics from ancient to modern times in European and non-European cultures.




Selected Works of Louis Neel


Book Description

One of the world's foremost authorities on magnetism, Professor Louis Neel was the recipient of the 1970 Nobel Prize in Physics. With all but ten of Neel's 150 original papers being written in French, the aim of this English edition is to bring this important work to a wider readership.




Reflections on Quanta, Symmetries, and Supersymmetries


Book Description

This is a collection of essays based on lectures that author has given on various occasions on foundation of quantum theory, symmetries and representation theory, and the quantum theory of the superworld created by physicists. The lectures are linked by a unifying theme: how the quantum world and superworld appear under the lens of symmetry and supersymmetry. In the world of ultra-small times and distances such as the Planck length and Planck time, physicists believe no measurements are possible and so the structure of spacetime itself is an unknown that has to be first understood. There have been suggestions (Volovich hypothesis) that world geometry at such energy regimes is non-archimedian and some of the lectures explore the consequences of such a hypothesis. Ultimately, symmetries and supersymmetries are described by the representation of groups and supergroups. The author's interest in representation is a lifelong one and evolved slowly, and owes a great deal to conversations and discussions he had with George Mackey and Harish-Chandra. The book concludes with a retrospective look at these conversations.




Horizons of Fractal Geometry and Complex Dimensions


Book Description

This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21–29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).




Equivalents of the Riemann Hypothesis: Volume 2, Analytic Equivalents


Book Description

The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.