Omics for Environmental Engineering and Microbiology Systems


Book Description

Bioremediation using microbes is a sustainable technology for biodegradation of target compounds, and an omics approach gives more clarity on these microbial communities. This book provides insights into the complex behavior of microbial communities and identifies enzymes/metabolites and their degradation pathways. It describes the application of microbes and their derivatives for the bioremediation of potentially toxic and novel compounds. It highlights the existing technologies along with industrial practices and real-life case studies. Features: Includes recent research and development in the areas of omics and microbial bioremediation. Covers the broad environmental pollution control approaches such as metagenomics, metabolomics, fluxomics, bioremediation, and biodegradation of industrial wastes. Reviews metagenomics and waste management, and recycling for environmental cleanup. Describes the metagenomic methodologies and best practices, from sample collection to data analysis for taxonomies. Explores various microbial degradation pathways and detoxification mechanisms for organic and inorganic contaminants of wastewater with their gene expression. This book is aimed at graduate students and researchers in environmental engineering, soil remediation, hazardous waste management, environmental modeling, and wastewater treatment.




Omics for Environmental Engineering and Microbiology Systems


Book Description

Bioremediation using microbes is a sustainable technology for biodegradation of target compounds, and an omics approach gives more clarity on these microbial communities. This book provides insights into the complex behavior of microbial communities and identifies enzymes/metabolites and their degradation pathways. It describes the application of microbes and their derivatives for the bioremediation of potentially toxic and novel compounds. It highlights the existing technologies along with industrial practices and real-life case studies. Features: Includes recent research and development in the areas of omics and microbial bioremediation. Covers the broad environmental pollution control approaches such as metagenomics, metabolomics, fluxomics, bioremediation, and biodegradation of industrial wastes. Reviews metagenomics and waste management, and recycling for environmental cleanup. Describes the metagenomic methodologies and best practices, from sample collection to data analysis for taxonomies. Explores various microbial degradation pathways and detoxification mechanisms for organic and inorganic contaminants of wastewater with their gene expression. This book is aimed at graduate students and researchers in environmental engineering, soil remediation, hazardous waste management, environmental modeling, and wastewater treatment.




OMICS


Book Description

With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research.




Omics Technologies and Bio-engineering


Book Description

Omics Technologies and Bio-Engineering: Towards Improving Quality of Life, Volume 1 is a unique reference that brings together multiple perspectives on omics research, providing in-depth analysis and insights from an international team of authors. The book delivers pivotal information that will inform and improve medical and biological research by helping readers gain more direct access to analytic data, an increased understanding on data evaluation, and a comprehensive picture on how to use omics data in molecular biology, biotechnology and human health care. - Covers various aspects of biotechnology and bio-engineering using omics technologies - Focuses on the latest developments in the field, including biofuel technologies - Provides key insights into omics approaches in personalized and precision medicine - Provides a complete picture on how one can utilize omics data in molecular biology, biotechnology and human health care




Environmental Genomics


Book Description

Here is a manual for an environmental scientist who wishes to embrace genomics to answer environmental questions. The volume covers: gene expression profiling, whole genome and chromosome mutation detection, and methods to assay genome diversity and polymorphisms within a particular environment. This book provides a systematic framework for determining environmental impact and ensuring human health and the sustainability of natural populations.




Evolution of Translational Omics


Book Description

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.




Single-Cell Omics


Book Description

Single-Cell Omics: Volume 1: Technological Advances and Applications provides the latest technological developments and applications of single-cell technologies in the field of biomedicine. In the current era of precision medicine, the single-cell omics technology is highly promising due to its potential in diagnosis, prognosis and therapeutics. Sections in the book cover single-cell omics research and applications, diverse technologies applied in the topic, such as pangenomics, metabolomics, and multi-omics of single cells, data analysis, and several applications of single-cell omics within the biomedical field, for example in cancer, metabolic and neuro diseases, immunology, pharmacogenomics, personalized medicine and reproductive health. This book is a valuable source for bioinformaticians, molecular diagnostic researchers, clinicians and members of the biomedical field who are interested in understanding more about single-cell omics and its potential for research and diagnosis. - Covers not only the technological aspects, but also the diverse applications of single cell omics in the biomedical field - Summarizes the latest progress in single cell omics and discusses potential future developments for research and diagnosis - Written by experts across the world, bringing different points-of-view and case studies to give a comprehensive overview on the topic




Biology for Engineers


Book Description

Biology is a critical application area for engineering analysis and design, and students in engineering programs must be well-versed in the fundamentals of biology as they relate to their field. Biology for Engineers is an introductory text that minimizes unnecessary memorization of connections and classifications and instead emphasizes concepts, technology, and the utilization of living things. Whether students are headed toward a bio-related engineering degree or one of the more traditional majors, biology is so important that all engineering students should know how living things work and act. Classroom-tested at the University of Maryland, this comprehensive text introduces concepts and terminology needed to understand more advanced biology literature. Filled with practical detailed examples, the book presents: Scientific principles relevant to biology that all engineers must know A discussion of biological responses from the perspective of a broad range of fields such as psychology, human factors, genetics, plant and animal physiology, imaging, control systems, actuary, and medicine A thorough examination of the scaling of biological responses and attributes A classification of different types of applications related to biological systems Tables of useful information that are nearly impossible to find elsewhere A series of questions at the end of each chapter to test comprehension Emphasizing the ever-present interactions between a biological unit and its physical, chemical, and biological environments, the book provides ample instruction on the basics of physics, chemistry, mathematics, and engineering. It brings together all of the concepts one needs to understand the role of biology in modern technology.




Microbial Ecology of Activated Sludge


Book Description

Microbial Ecology of Activated Sludge, written for both microbiologists and engineers, critically reviews our current understanding of the microbiology of activated sludge, the most commonly used process for treating both domestic and industrial wastes. The contributors are all internationally recognized as leading research workers in activated sludge microbiology, and all have made valuable contributions to our present understanding of the process. The book pays particular attention to how the application of molecular methods has changed our perceptions of the identity of the filamentous bacteria causing the operational disorders of bulking and foaming, and the bacteria responsible for nitrification and denitrification and phosphorus accumulation in nutrient removal processes. Special attention is given to how it is now becoming possible to relate the composition of the community of microbes present in activated sludge, and the in situ function of individual populations there, and how such information might be used to manage and control these systems better. Detailed descriptions of some of these molecular methods are provided to allow newcomers to this field of study an opportunity to apply them in their research. Comprehensive descriptions of organisms of interest and importance are also given, together with high quality photos of activated sludge microbes. Activated sludge processes have been used globally for nearly 100 years, and yet we still know very little of how they work. In the past 15 years the advent of molecular culture independent methods of study have provided tools enabling microbiologists to understand which organisms are present in activated sludge, and critically, what they might be doing there. Microbial Ecology of Activated Sludge will be the first book available to deal comprehensively with the very exciting new information from applying these methods, and their impact on how we now view microbiologically mediated processes taking place there. As such it will be essential reading for microbial ecologists, environmental biotechnologists and engineers involved in designing and managing these plants. It will also be suitable for postgraduate students working in this field.




Molecular Medicine


Book Description

Molecular medicine is an applied science focused on human genes/transcripts, proteins, metabolites, and metabolic networks that describes molecular and cellular processes of health and disease onset and progression. Molecular medicine-based integrative identification and characterization of biomarker targets and their clinical translations is essential to explain/decipher the mechanism(s) underlying physiological pathways and pathological conditions, and acquire cell-targeted early interventional and therapeutic strategies in the context of precision medicine and public health. Principally, Molecular Medicine provides an overview of the latest headlines/developments of systems and molecular medicine, highlighting the emerging high-throughput technologies, promising potential applications, and progress in biomedical research and development strategies.




Recent Books