Omics Science for Rhizosphere Biology


Book Description

This book presents a timely review of the latest advances in rhizosphere biology, which have been facilitated by the application of omics tools. It includes chapters on the use of various omics tools in rhizosphere biology, focusing on understanding plant and soil microbe interactions. The role of proteomics and metagenomics in research on symbiotic association is also discussed in detail. The book also includes chapters on the use of omics tools for the isolation of functional biomolecules from rhizospheric microorganisms. The book’s respective sections describe and provide detailed information on important omics tools, such as genomics, transcriptomics, proteomics, metabolomics and meta-epigenomics. In turn, the book promotes and describes the combined use of plant biology, microbial ecology, and soil sciences to design new research strategies and innovative methods in soil biology. Lastly, it highlights the considerable potential of the rhizosphere in terms of crop productivity, bioremediation, ecological engineering, plant nutrition and health, as well as plant adaptation to stress conditions. This book offers both a practical guide and reference source for all scientists working in soil biology, plant pathology, etc. It will also benefit students studying soil microbiology, and researchers studying rhizosphere structure.




Rhizosphere Biology: Interactions Between Microbes and Plants


Book Description

This book presents a detailed discussion on the direct interactions of plants and microorganisms in the rhizosphere environment. It includes fifteen chapters, each focusing on a specific component of plant-microbe interactions, such as the influence of plants on the root microbiome, and the downstream effects of rhizosphere microbial dynamics on carbon and nutrient fluxes in the surroundings. As such, the book helps readers gain a better understanding of diversity above the ground, and its effect on the microbiome and its functionality.




Rhizosphere Revolution


Book Description

This book analyses the complexities of the rhizosphere ecosystem and discusses the role of insect pheromones in shaping soil health and vermicompost production. It details the mechanisms of insect pheromone communication, their impact on soil microbial communities, and their potential applications in sustainable agriculture and vermicompost production. The subject matter in this book also discusses: The Underground Symphony Pheromones in Pest Control The Sentient Soil Hypothesis Bio-Engineered Insect Allies The Global Impact of Rhizosphere Revolution Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan)




Microbial Technology for Agro-Ecosystems


Book Description

Microbial Technology for Agro-Ecosystems: Crop Productivity, Sustainability, and Biofortification describes the application of competent microbes in plant growth promotion, nutrient management and recycling from molecular perspectives. Understanding of molecular mechanism of Microbial diversity in association with plant roots is very imperative for plant health and ecosystem equilibrium. - Covers fundamental mechanisms, molecular approaches and function aspects of microbial technology - Describes innovative approaches to the management, development and advancement of agro-ecosystem green technologies - Highlights improving soil biological health, microbial biomass, soil fertility and plant productivity




Bioinoculants: Biological Option for Mitigating global Climate Change


Book Description

This edited book covers various bioinoculants for sustainable crop production under the changing global climate. The book envisages a compilation of articles relevant to the current status of production and use of novel microbial inoculants for different crops and highlights their role in mitigating global climate challenges. These include nutrient deficiencies, salinity, drought, and emerging pathogens. In addition, success stories and commercialization aspects are also discussed. Growing environmental concerns related to climate change can potentially decrease the global yield capacity of agricultural systems. Agricultural productivity is severely affected by major biotic and abiotic factors. The phytomicrobiome plays a critical role in the survival of the holobiont, particularly for plants growing in extreme environments. The use of microbial-based agricultural inputs has a long history, beginning with a broad-scale rhizobial inoculation of legumes in the early twentieth century. Microbial inoculants are considered one of the best and most effective strategies for sustainable agriculture under climate change, and a viable solution to meet the twin challenges of global food security and environmental sustainability. It is therefore imperative to understand the current status and development in the area of bioinoculants from a global perspective. The chapter’s focus would be on major agro-ecologies, covering all major crops across the globe, along with the commercialization status of different bioinoculants in different countries The book caters to the needs of the students, faculty, policymakers, and researchers working in the area of microbiology, biotechnology, environmental sciences, and botany.




The Rhizosphere


Book Description

In the rhizosphere, exudates from plants and microorganisms as well as stable soil organic matter influence processes that can control plant growth, microbial infections, and nutrient uptake. As the chemistry and biochemistry of these substances becomes more and more clear, their study promises to shed light on the complex interactions between plan




PlantOmics: The Omics of Plant Science


Book Description

PlantOmics: The Omics of Plant Science provides a comprehensive account of the latest trends and developments of omics technologies or approaches and their applications in plant science. Thirty chapters written by 90 experts from 15 countries are included in this state-of-the-art book. Each chapter describes one topic/omics such as: omics in model plants, spectroscopy for plants, next generation sequencing, functional genomics, cyto-metagenomics, epigenomics, miRNAomics, proteomics, metabolomics, glycomics, lipidomics, secretomics, phenomics, cytomics, physiomics, signalomics, thiolomics, organelle omics, micro morphomics, microbiomics, cryobionomics, nanotechnology, pharmacogenomics, and computational systems biology for plants. It provides up to date information, technologies, and their applications that can be adopted and applied easily for deeper understanding plant biology and therefore will be helpful in developing the strategy for generating cost-effective superior plants for various purposes. In the last chapter, the editors have proposed several new areas in plant omics that may be explored in order to develop an integrated meta-omics strategy to ensure the world and earth’s health and related issues. This book will be a valuable resource to students and researchers in the field of cutting-edge plant omics.




New Insights, Trends, and Challenges in the Development and Applications of Microbial Inoculants in Agriculture


Book Description

New Insights, Trends and Challenges in the Development and Applications of Microbial Inoculants in Agriculture provides information about how to develop high-quality microbial inoculants (biofertilizers and biopesticides) for increasing crop yields and quality and reducing the economic, environmental and health costs of food production. The book's chapters discuss cutting-edge approaches and techniques to develop bioformulations as reliable, viable solutions for food production, including the importance of a legal framework to guarantee the quality and safety of these bio-products. Additionally, it provides information on the current limitations and future approaches to enhance microbial inoculant development for contributing to global food security. Interest in biofertilizers and the potential for their use in sustainable agriculture is increasing. However, many commercial bioproducts are low quality due to the lack of quality standards which causes a decrease in efficiency, high variability in the field, and loss of confidence from farmers. - Presents new updates that are based on new research and approaches in the production of microbial inoculants - Focuses on the needs of readers, covering key steps and points that should not be overlooked - Links scientific and practical knowledge so readers can apply the knowledge acquired in their research on the development of biofertilizers and biopesticides - Helps companies can their inoculant production processes - Provides updates on how the criteria and selection of bioproducts based on PGPM can increase efficiency of crops through correct application and evaluation of plant performance




Stress-responsive Factors and Molecular Farming in Medicinal Plants


Book Description

This contributed volume brings out a comprehensive collection of changes from cellular to molecular levels in medicinal plants under extreme environments. The focus of this book is to address the molecular changes in medicinal plants under different abiotic stresses. Medicinal plants are regarded as rich resources of components that can be used for drug development in the pharmaceutical industry. A few medicinal plants are considered vital sources of nutrients and solicited for their therapeutic properties. Therefore, it is essential to understand medicinal plants' interaction under abiotic stresses as compounds obtained from these plants play an important role in human health. This book is of interest to students, teachers, researchers, scientists, medicinal plant experts, and policymakers. Also, the book provides study material for undergraduate and graduate students of botany, environmental sciences, medicinal and aromatic plants, biochemistry, and biotechnology. National and international scientists working in the area of medicinal plants, drug development, and policymakers will also find this a useful read




Secondary Metabolites in Soil Ecology


Book Description

Microbiologists and soil scientists will find this study compelling reading. It focuses on the role of bacterial, fungal and plant secondary metabolites in soil ecosystems. Our understanding of the biological function of secondary metabolites is surprisingly limited, considering our knowledge of their structural diversity and pharmaceutical activity. This book reviews functional aspects of secondary metabolite production, with a focus on interactions among soil organisms.