Polynomial Operator Equations in Abstract Spaces and Applications


Book Description

Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include: Special cases of nonlinear operator equations Solution of polynomial operator equations of positive integer degree n Results on global existence theorems not related with contractions Galois theory Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas Results on the various Chandrasekhar equations Weierstrass theorem Matrix representations Lagrange and Hermite interpolation Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies Advanced numerical analysis Numerical functional analysis Functional analysis Approximation theory Integral and differential equation




Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32


Book Description

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.




Functional Analysis and Approximation


Book Description

These Proceedings form a record of the lectures presented at the interna tional Conference on Functional Analysis and Approximation held at the Ober wolfach Mathematical Research Institute, August 9-16, 1980. They include 33 of the 38 invited conference papers, as well as three papers subsequently submitted in writing. Further, there is a report devoted to new and unsolved problems, based on two special sessions of the conference. The present volume is the sixth Oberwolfach Conference in Birkhauser's ISNM series to be edited at Aachen *. It is once again devoted to more significant results obtained in the wide areas of approximation theory, harmonic analysis, functional analysis, and operator theory during the past three years. Many of the papers solicited not only outline fundamental advances in their fields but also focus on interconnections between the various research areas. The papers in the present volume have been grouped into nine chapters. Chapter I, on operator theory, deals with maps on positive semidefinite opera tors, spectral bounds of semigroup operators, evolution equations of diffusion type, the spectral theory of propagators, and generalized inverses. Chapter II, on functional analysis, contains papers on modular approximation, interpolation spaces, and unconditional bases.




Operator Approach to Linear Control Systems


Book Description

The idea of optimization runs through most parts of control theory. The simplest optimal controls are preplanned (programmed) ones. The problem of constructing optimal preplanned controls has been extensively worked out in literature (see, e. g. , the Pontrjagin maximum principle giving necessary conditions of preplanned control optimality). However, the concept of op timality itself has a restrictive character: it is limited by what one means under optimality in each separate case. The internal contradictoriness of the preplanned control optimality ("the better is the enemy of the good") yields that the practical significance of optimal preplanned controls proves to be not great: such controls are usually sensitive to unregistered disturbances (includ ing the round-off errors which are inevitable when computer devices are used for forming controls), as there is the effect of disturbance accumulation in the control process which makes controls to be of little use on large time inter vals. This gap is mainly provoked by oversimplified settings of optimization problems. The outstanding result of control theory established in the end of the first half of our century is that controls in feedback form ensure the weak sensitivity of closed loop systems with respect to "small" unregistered internal and external disturbances acting in them (here we do not need to discuss performance indexes, since the considered phenomenon is of general nature). But by far not all optimal preplanned controls can be represented in a feedback form.




History of Banach Spaces and Linear Operators


Book Description

Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. Banach space theory is presented as a part of a broad mathematics context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, logic, etc. Equal emphasis is given to both spaces and operators. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor.




Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory


Book Description

This book is dedicated to Victor Emmanuilovich Katsnelson on the occasion of his 75th birthday and celebrates his broad mathematical interests and contributions.Victor Emmanuilovich’s mathematical career has been based mainly at the Kharkov University and the Weizmann Institute. However, it also included a one-year guest professorship at Leipzig University in 1991, which led to him establishing close research contacts with the Schur analysis group in Leipzig, a collaboration that still continues today. Reflecting these three periods in Victor Emmanuilovich's career, present and former colleagues have contributed to this book with research inspired by him and presentations on their joint work. Contributions include papers in function theory (Favorov-Golinskii, Friedland-Goldman-Yomdin, Kheifets-Yuditskii) , Schur analysis, moment problems and related topics (Boiko-Dubovoy, Dyukarev, Fritzsche-Kirstein-Mädler), extension of linear operators and linear relations (Dijksma-Langer, Hassi-de Snoo, Hassi -Wietsma) and non-commutative analysis (Ball-Bolotnikov, Cho-Jorgensen).




An Introduction to Classical and P-adic Theory of Linear Operators and Applications


Book Description

This book provides the reader with a self-contained treatment of the classical operator theory with significant applications to abstract differential equations, and an elegant introduction to basic concepts and methods of the rapidly growing theory of the so-called p-adic operator theory.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Stochastic Processes and Functional Analysis


Book Description

"Covers the areas of modern analysis and probability theory. Presents a collection of papers given at the Festschrift held in honor of the 65 birthday of M. M. Rao, whose prolific published research includes the well-received Marcel Dekker, Inc. books Theory of Orlicz Spaces and Conditional Measures and Applications. Features previously unpublished research articles by a host of internationally recognized scholars."




Approximate Solution of Operator Equations


Book Description

One of the most important chapters in modern functional analysis is the theory of approximate methods for solution of various mathematical problems. Besides providing considerably simplified approaches to numerical methods, the ideas of functional analysis have also given rise to essentially new computation schemes in problems of linear algebra, differential and integral equations, nonlinear analysis, and so on. The general theory of approximate methods includes many known fundamental results. We refer to the classical work of Kantorovich; the investigations of projection methods by Bogolyubov, Krylov, Keldysh and Petrov, much furthered by Mikhlin and Pol'skii; Tikho nov's methods for approximate solution of ill-posed problems; the general theory of difference schemes; and so on. During the past decade, the Voronezh seminar on functional analysis has systematically discussed various questions related to numerical methods; several advanced courses have been held at Voronezh Uni versity on the application of functional analysis to numerical mathe matics. Some of this research is summarized in the present monograph. The authors' aim has not been to give an exhaustive account, even of the principal known results. The book consists of five chapters.