Advances and Applications of DSmT for Information Fusion (Collected Works. Volume 5)


Book Description

This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well. We want to thank all the contributors of this fifth volume for their research works and their interests in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions and comments on DSmT through the years. We thank the International Society of Information Fusion (www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the international fusion conferences series over the years. Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially sponsored him to attend international conferences, workshops and seminars on Information Fusion. Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the French Aerospace Lab (Office National d’E´tudes et de Recherches Ae´rospatiales), Palaiseau, France, for encouraging him to carry on this research and for its financial support. Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during more than 20 years to follow and share his smart and beautiful visions and ideas in the development of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to attend international conferences on Information Fusion.




Combination of uncertain ordinal expert statements: The combination rule EIDMR and its application to low-voltage grid classification with SVM


Book Description

The use of expert knowledge is always more or less afflicted with uncertainties for many reasons: Expert knowledge may be imprecise, imperfect, or erroneous, for instance. If we ask several experts to label data (e.g., to assign class labels to given data objects, i.e. samples), we often state that these experts make different, sometimes conflicting statements.




Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 4


Book Description

The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions have been published or presented after disseminating the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals.




Advances and Applications of DSmT for Information Fusion, Vol. IV


Book Description

The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) ininternational conferences, seminars, workshops and journals.




Design and the Reliability Factor


Book Description

Sophisticated infotainment systems, lane departure warning, adaptive cruise control, and blind-spot monitoring are increasingly common in cars today. The proliferation of automotive electronics and other “smart” features has increased the market for automotive semiconductor devices and the number of sensors per vehicle. Yet, more chips and greater functionality translate to further networking/communications activity within the car, and that raises the prospect of potentially serious errors. How to minimize them by design is the focus of this book, which contains seven of SAE International’s handpicked technical papers, covering: • A way to calculate the reliability of priority-driven, real-time components with respect to timing failures, resulting in a realistic estimate of each component’s reliability. • A delayed-decision cycle detection method that can detect and prevent spoofing attacks with high accuracy. • An AUTOSAR-compliant automotive platform for meeting reliability and timing constraints. • An eight-point process for determining the cause of failures with real-world cases in which the process was used. • The use of accelerated reliability and durability testing technology for better performance estimation. • How to achieve reliable sensor-fusion despite system complexity and inconsistency. • How to improve domain controller availability while maintaining functional safety in mixed-criticality automotive safety systems.







Real-time Driving Context Understanding using Deep Grid Net: A Granular Approach


Book Description

Numerous self-driving cars algorithms rely on grid maps for motion planning, obstacles avoidance or environment perception. Obtained from fused sensory information, the occupancy grids (OGs) are nowadays among the most popular solutions used in series production in automotive industry. In this paper, we extend Deep Grid Net (DGN), a deep learning(DL) system designed for understanding the context in which an autonomous car is driving.We consider this paper a granular approach to DGN method due to the improvements added to the original research.




A Mathematical Theory of Evidence


Book Description

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.




Recent Advances in Computational Optimization


Book Description

This book presents recent advances in computational optimization. Our everyday life is unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many real-world and industrial problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. The book is a comprehensive collection of extended contributions from the Workshops on Computational Optimization 2020. The book includes important real problems like modeling of physical processes, workforce planning, parameter settings for controlling different processes, transportation problems, wireless sensor networks, machine scheduling, air pollution modeling, solving multiple integrals and systems of differential equations which describe real processes, solving engineering problems. It shows how to develop algorithms for them based on new intelligent methods like evolutionary computations, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics and other domains can be formulated as optimization problems.




Classic Works of the Dempster-Shafer Theory of Belief Functions


Book Description

This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.