Book Description
A major aim of this book is to present the theory of combinatorial geometry in a form accessible to mathematicians working in disparate subjects.
Author : Henry H. Crapo
Publisher : MIT Press (MA)
Page : 350 pages
File Size : 48,72 MB
Release : 1970
Category : Mathematics
ISBN :
A major aim of this book is to present the theory of combinatorial geometry in a form accessible to mathematicians working in disparate subjects.
Author : Neil White
Publisher : Cambridge University Press
Page : 230 pages
File Size : 36,44 MB
Release : 1987-09-24
Category : Mathematics
ISBN : 9780521333399
This book is a continuation of Theory of Matroids (also edited by Neil White), and again consists of a series of related surveys that have been contributed by authorities in the area. The volume begins with three chapters on coordinatisations, followed by one on matching theory. The next two deal with transversal and simplicial matroids. These are followed by studies of the important matroid invariants. The final chapter deals with matroids in combinatorial optimisation, a topic of much current interest. The whole volume has been carefully edited to ensure a uniform style and notation throughout, and to make a work that can be used as a reference or as an introductory textbook for graduate students or non-specialists.
Author : Jacob E. Goodman
Publisher : Cambridge University Press
Page : 640 pages
File Size : 23,91 MB
Release : 2005-08-08
Category : Computers
ISBN : 9780521848626
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Author : Martin Aigner
Publisher : Springer Science & Business Media
Page : 489 pages
File Size : 39,57 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 1461566665
It is now generally recognized that the field of combinatorics has, over the past years, evolved into a fully-fledged branch of discrete mathematics whose potential with respect to computers and the natural sciences is only beginning to be realized. Still, two points seem to bother most authors: The apparent difficulty in defining the scope of combinatorics and the fact that combinatorics seems to consist of a vast variety of more or less unrelated methods and results. As to the scope of the field, there appears to be a growing consensus that combinatorics should be divided into three large parts: (a) Enumeration, including generating functions, inversion, and calculus of finite differences; (b) Order Theory, including finite posets and lattices, matroids, and existence results such as Hall's and Ramsey's; (c) Configurations, including designs, permutation groups, and coding theory. The present book covers most aspects of parts (a) and (b), but none of (c). The reasons for excluding (c) were twofold. First, there exist several older books on the subject, such as Ryser [1] (which I still think is the most seductive introduction to combinatorics), Hall [2], and more recent ones such as Cameron-Van Lint [1] on groups and designs, and Blake-Mullin [1] on coding theory, whereas no compre hensive book exists on (a) and (b).
Author : KUNG
Publisher : Springer Science & Business Media
Page : 400 pages
File Size : 23,11 MB
Release : 2013-11-09
Category : Mathematics
ISBN : 1468491997
by Gian-Carlo Rota The subjects of mathematics, like the subjects of mankind, have finite lifespans, which the historian will record as he freezes history at one instant of time. There are the old subjects, loaded with distinctions and honors. As their problems are solved away and the applications reaped by engineers and other moneymen, ponderous treatises gather dust in library basements, awaiting the day when a generation as yet unborn will rediscover the lost paradise in awe. Then there are the middle-aged subjects. You can tell which they are by roaming the halls of Ivy League universities or the Institute for Advanced Studies. Their high priests haughtily refuse fabulous offers from eager provin cial universities while receiving special permission from the President of France to lecture in English at the College de France. Little do they know that the load of technicalities is already critical, about to crack and submerge their theorems in the dust of oblivion that once enveloped the dinosaurs. Finally, there are the young subjects-combinatorics, for instance. Wild eyed individuals gingerly pick from a mountain of intractable problems, chil dishly babbling the first words of what will soon be a new language. Child hood will end with the first Seminaire Bourbaki. It could be impossible to find a more fitting example than matroid theory of a subject now in its infancy. The telltale signs, for an unfailing diagnosis, are the abundance of deep theorems, going together with a paucity of theories.
Author : Lucien Marie Le Cam
Publisher : Univ of California Press
Page : 664 pages
File Size : 29,59 MB
Release : 1972
Category : Biometry
ISBN : 9780520021846
Author : Ronald L. Graham
Publisher : Elsevier
Page : 1124 pages
File Size : 42,77 MB
Release : 1995-12-11
Category : Business & Economics
ISBN : 9780444823465
Handbook of Combinatorics, Volume 1 focuses on basic methods, paradigms, results, issues, and trends across the broad spectrum of combinatorics. The selection first elaborates on the basic graph theory, connectivity and network flows, and matchings and extensions. Discussions focus on stable sets and claw free graphs, nonbipartite matching, multicommodity flows and disjoint paths, minimum cost circulations and flows, special proof techniques for paths and circuits, and Hamilton paths and circuits in digraphs. The manuscript then examines coloring, stable sets, and perfect graphs and embeddings and minors. The book takes a look at random graphs, hypergraphs, partially ordered sets, and matroids. Topics include geometric lattices, structural properties, linear extensions and correlation, dimension and posets of bounded degree, hypergraphs and set systems, stability, transversals, and matchings, and phase transition. The manuscript also reviews the combinatorial number theory, point lattices, convex polytopes and related complexes, and extremal problems in combinatorial geometry. The selection is a valuable reference for researchers interested in combinatorics.
Author : Bozzano G Luisa
Publisher : Elsevier
Page : 1121 pages
File Size : 10,34 MB
Release : 1995-12-11
Category : Computers
ISBN : 0080933351
Handbook of Combinatorics, Volume 1 focuses on basic methods, paradigms, results, issues, and trends across the broad spectrum of combinatorics. The selection first elaborates on the basic graph theory, connectivity and network flows, and matchings and extensions. Discussions focus on stable sets and claw free graphs, nonbipartite matching, multicommodity flows and disjoint paths, minimum cost circulations and flows, special proof techniques for paths and circuits, and Hamilton paths and circuits in digraphs. The manuscript then examines coloring, stable sets, and perfect graphs and embeddings and minors. The book takes a look at random graphs, hypergraphs, partially ordered sets, and matroids. Topics include geometric lattices, structural properties, linear extensions and correlation, dimension and posets of bounded degree, hypergraphs and set systems, stability, transversals, and matchings, and phase transition. The manuscript also reviews the combinatorial number theory, point lattices, convex polytopes and related complexes, and extremal problems in combinatorial geometry. The selection is a valuable reference for researchers interested in combinatorics.
Author :
Publisher : Elsevier
Page : 936 pages
File Size : 41,88 MB
Release : 1995-12-18
Category : Mathematics
ISBN : 0080532950
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.
Author : R.L. Graham
Publisher : Elsevier
Page : 2404 pages
File Size : 17,10 MB
Release : 1995-12-11
Category : Computers
ISBN : 008093384X
Handbook of Combinatorics