Wind Resource Assessment


Book Description

A practical, authoritative guide to the assessment of wind resources for utility-scale wind projects authored by a team of experts from a leading renewable energy consultancy The successful development of wind energy projects depends on an accurate assessment of where, how often, and how strongly the wind blows. A mistake in this stage of evaluation can cause severe financial losses and missed opportunities for developers, lenders, and investors. Wind Resource Assessment: A Practical Guide to Developing a Wind Project shows readers how to achieve a high standard of resource assessment, reduce the uncertainty associated with long-term energy performance, and maximize the value of their project assets. Beginning with the siting, installation, and operation of a high-quality wind monitoring program, this book continues with methods of data quality control and validation, extrapolating measurements from anemometer height to turbine height, adjusting short-term observations for historical climate conditions, and wind flow modeling to account for terrain and surface conditions. In addition, Wind Resource Assessment addresses special topics such as: Worker safety Data security Remote sensing technology (sodar and lidar) Offshore resource assessment Impacts of climate change Uncertainty estimation Plant design and energy production estimatio Filled with important information ranging from basic fundamentals of wind to cutting-edge research topics, and accompanied by helpful references and discussion questions, this comprehensive text designed for an international audience is a vital reference that promotes consistent standards for wind assessment across the industry.




Guidelines for Wind Resource Assessment


Book Description

Wind Resource Assessment (WRA) is a pivotal step in the development phase because it determines the bankability of wind projects. The Asian Development Bank’s Quantum Leap in Wind Power Development in Asia and the Pacific project has developed WRA guidelines that encapsulate best practices for new and emerging wind energy markets with the goal of accelerating wind energy development. The guidelines address challenges to policy support for WRA, wind measurement, wind data processing, wind flow modeling, and estimation of losses and uncertainty. These are challenges faced in these markets by policy makers, implementation agencies, utilities, developers, and financiers.




Wind Resource Assessment and Micro-siting


Book Description

Covers all the key areas of wind resource assessment technologies from an engineer’s perspective Focuses on wind analysis for wind plant siting, design and analysis Addresses all aspects from atmospheric boundary layer characteristics, to wind resource measurement systems, uncertainties in measurements, computations and analyses, to plant performance Covers the basics of atmospheric science through to turbine siting, turbine responses, and to environmental impacts Contents can be used for research purposes as well as a go-to reference guide, written from the perspective of a hands-on engineer Topic is of ongoing major international interest for its economic and environmental benefits




Wind Resource Assessment


Book Description

A practical, authoritative guide to the assessment of wind resources for utility-scale wind projects authored by a team of experts from a leading renewable energy consultancy The successful development of wind energy projects depends on an accurate assessment of where, how often, and how strongly the wind blows. A mistake in this stage of evaluation can cause severe financial losses and missed opportunities for developers, lenders, and investors. Wind Resource Assessment: A Practical Guide to Developing a Wind Project shows readers how to achieve a high standard of resource assessment, reduce the uncertainty associated with long-term energy performance, and maximize the value of their project assets. Beginning with the siting, installation, and operation of a high-quality wind monitoring program, this book continues with methods of data quality control and validation, extrapolating measurements from anemometer height to turbine height, adjusting short-term observations for historical climate conditions, and wind flow modeling to account for terrain and surface conditions. In addition, Wind Resource Assessment addresses special topics such as: Worker safety Data security Remote sensing technology (sodar and lidar) Offshore resource assessment Impacts of climate change Uncertainty estimation Plant design and energy production estimatio Filled with important information ranging from basic fundamentals of wind to cutting-edge research topics, and accompanied by helpful references and discussion questions, this comprehensive text designed for an international audience is a vital reference that promotes consistent standards for wind assessment across the industry.




Hydrologic Time Series Analysis


Book Description

There is a dearth of relevant books dealing with both theory and application of time series analysis techniques, particularly in the field of water resources engineering. Therefore, many hydrologists and hydrogeologists face difficulties in adopting time series analysis as one of the tools for their research. This book fills this gap by providing a proper blend of theoretical and practical aspects of time sereies analysis. It deals with a comprehensive overview of time series characteristics in hydrology/water resources engineering, various tools and techniques for analyzing time series data, theoretical details of 31 available statistical tests along with detailed procedures for applying them to real-world time series data, theory and methodology of stochastic modelling, and current status of time series analysis in hydrological sciences. In adition, it demonstrates the application of most time series tests through a case study as well as presents a comparative performance evaluation of various time series tests, together with four invited case studies from India and abroad. This book will not only serve as a textbook for the students and teachers in water resources engineering but will also serve as the most comprehensive reference to educate researchers/scientists about the theory and practice of time series analysis in hydrological sciences. This book will be very useful to the students, researchers, teachers and professionals involved in water resources, hydrology, ecology, climate change, earth science, and environmental studies.




Statistical Analysis in Climate Research


Book Description

Climatology is, to a large degree, the study of the statistics of our climate. The powerful tools of mathematical statistics therefore find wide application in climatological research. The purpose of this book is to help the climatologist understand the basic precepts of the statistician's art and to provide some of the background needed to apply statistical methodology correctly and usefully. The book is self contained: introductory material, standard advanced techniques, and the specialised techniques used specifically by climatologists are all contained within this one source. There are a wealth of real-world examples drawn from the climate literature to demonstrate the need, power and pitfalls of statistical analysis in climate research. Suitable for graduate courses on statistics for climatic, atmospheric and oceanic science, this book will also be valuable as a reference source for researchers in climatology, meteorology, atmospheric science, and oceanography.




Handbook of Wind Resource Assessment


Book Description

HANDBOOK OF WIND RESOURCE ASSESSMENT Useful reference text underpinning the theory behind wind resource assessment along with its practical application Handbook of Wind Resource Assessment provides a comprehensive description of the background theory, methods, models, applications, and analysis of the discipline of wind resource assessment, covering topics such as climate variability, measurement, wind distributions, numerical modeling, statistical modeling, reanalysis datasets, applications in different environments (onshore and offshore), wind atlases, and future climate. The text provides an up-to-date assessment of the tools available for wind resource assessment and their application in different environments. It also summarizes our present understanding of the wind climate and its variability, with a particular focus on its relevance to wind resource assessment. Written by a highly qualified professional in the fields of wind resource assessment, wind turbine condition monitoring, and wind turbine wake modeling, sample topics included in Handbook of Wind Resource Assessment are as follows: Climate variability, covering temporal scales of variation, power spectrum, short term variation and turbulence, the spectral gap, and long-term variation Measurement, covering history of wind speed measurement, types of measurement, terrestrial measurements, anemometers, wind vanes, lidars, sodars and remote sensing Distributions, covering synoptic scale wind distributions, turbulent scale distributions, contrast between mean and extreme values, and extreme value statistics Physical modeling, covering spatial scales of variability, the governing equations, models of varying complexity, mass consistent models, linearized models and semi-empirical models Statistical modeling, covering the use of measure-correlate-predict (MCP), wind indices and spatial interpolation Handbook of Wind Resource Assessment serves as a comprehensive text that brings together the different aspects of wind resource assessment in one place. It is an essential resource for anyone who wishes to understand the underlying science, models, or applications of wind resources, including postgraduates, academics, and wind resource professionals.




1999 European Wind Energy Conference


Book Description

The 1999 European Wind Energy Conference and Exhibition was organized to review progress, and present and discuss the wind energy business, technology and science for the future. The Proceedings contain a selection of over 300 papers from the conference. They represent a significant update to the understanding of this increasingly important field of energy generation and cover a full range of topics.




Air Bubble Entrainment in Free-Surface Turbulent Shear Flows


Book Description

This book develops an analysis of the air entrainment processes in free-surface flows. These flows are investigated as homogeneous mixtures with variable density. Several types of air-water free-surface flows are studied: plunging jet flows, open channel flows, and turbulent water jets discharging into air. Experimental observations reported by the author confirm the concept that the air-water mixture behaves as a homogeneous compressible fluid in each case. This book will be of great interest to professionals working in many fields of engineering: chemical, civil, environmental, mechanical, mining, metallurgy, and nuclear. Covers new information on the air-water flow field: air bubble distributions, air-water velocity profiles, air bubble sizes and bubble-turbulence interactions Features new analysis is developed for each flow configuration and compared successfully with model and prototype data Includes over 372 references and more than 170 figures with over 60 photographs Presents useful information for design engineers and research-and-development scientists who require a better understanding of the fluid mechanics of air-water flows




Floating Offshore Wind Farms


Book Description

This book provides an overview of floating offshore wind farms and focuses on the economic aspects of this renewable-energy technology. It presents economic maps demonstrating the main costs, and explores various important aspects of floating offshore wind farms. It examines topics including offshore wind turbines, floating offshore wind platforms, mooring and anchoring, as well as offshore electrical systems. It is a particularly useful resource in light of the fact that most water masses are deep and therefore not suitable for fixed offshore wind farms. A valuable reference work for students and researchers interested in naval and ocean engineering and economics, this book provides a new perspective on floating offshore wind farms, and makes a useful contribution to the existing literature.