On Uniformization of Complex Manifolds


Book Description

The classical uniformization theorem for Riemann surfaces and its recent extensions can be viewed as introducing special pseudogroup structures, affine or projective structures, on Riemann surfaces. In fact, the additional structures involved can be considered as local forms of the uniformizations of Riemann surfaces. In this study, Robert Gunning discusses the corresponding pseudogroup structures on higher-dimensional complex manifolds, modeled on the theory as developed for Riemann surfaces. Originally published in 1978. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.







Uniformization of Riemann Surfaces


Book Description

In 1907, Paul Koebe and Henri Poincare almost simultaneously proved the uniformization theorem: Every simply connected Riemann surface is isomorphic to the plane, the open unit disc, or the sphere. It took a whole century to get to the point of stating this theorem and providing a convincing proof of it, relying as it did on prior work of Gauss, Riemann, Schwarz, Klein, Poincare, and Koebe, among others. The present book offers an overview of the maturation process of this theorem. The evolution of the uniformization theorem took place in parallel with the emergence of modern algebraic geometry, the creation of complex analysis, the first stirrings of functional analysis, and with the flowering of the theory of differential equations and the birth of topology. The uniformization theorem was, thus, one of the lightning rods of 19th century mathematics. Rather than describe the history of a single theorem, the book aims to return to the original proofs, to look at these through the eyes of modern mathematicians, to inquire as to their correctness, and to attempt to make them rigorous while respecting, as much as possible, the state of mathematical knowledge at the time, or, if this should prove impossible, then to use modern mathematical tools that were not available to the authors of the original proofs. This book will be useful to mathematicians wishing to cast a glance back at the history of their discipline. It should also provide graduate students with a non-standard approach to concepts of great importance for modern research.




Complex Kleinian Groups


Book Description

This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.​




Collected Papers of Yoz“ Matsushima


Book Description

In the past thirty years, differential geometry has undergone an enormous change with infusion of topology, Lie theory, complex analysis, algebraic geometry and partial differential equations. Professor Matsushima played a leading role in this transformation by bringing new techniques of Lie groups and Lie algebras into the study of real and complex manifolds. This volume is a collection of all the 46 papers written by him.




Geometry, Topology and Physics


Book Description

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.




Topological, Differential and Conformal Geometry of Surfaces


Book Description

This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.




Introduction to Complex Manifolds


Book Description

Complex manifolds are smooth manifolds endowed with coordinate charts that overlap holomorphically. They have deep and beautiful applications in many areas of mathematics. This book is an introduction to the concepts, techniques, and main results about complex manifolds (mainly compact ones), and it tells a story. Starting from familiarity with smooth manifolds and Riemannian geometry, it gradually explains what is different about complex manifolds and develops most of the main tools for working with them, using the Kodaira embedding theorem as a motivating project throughout. The approach and style will be familiar to readers of the author's previous graduate texts: new concepts are introduced gently, with as much intuition and motivation as possible, always relating new concepts to familiar old ones, with plenty of examples. The main prerequisite is familiarity with the basic results on topological, smooth, and Riemannian manifolds. The book is intended for graduate students and researchers in differential geometry, but it will also be appreciated by students of algebraic geometry who wish to understand the motivations, analogies, and analytic results that come from the world of differential geometry.




Elliptic Curves


Book Description

An elliptic curve is a particular kind of cubic equation in two variables whose projective solutions form a group. Modular forms are analytic functions in the upper half plane with certain transformation laws and growth properties. The two subjects--elliptic curves and modular forms--come together in Eichler-Shimura theory, which constructs elliptic curves out of modular forms of a special kind. The converse, that all rational elliptic curves arise this way, is called the Taniyama-Weil Conjecture and is known to imply Fermat's Last Theorem. Elliptic curves and the modeular forms in the Eichler- Shimura theory both have associated L functions, and it is a consequence of the theory that the two kinds of L functions match. The theory covered by Anthony Knapp in this book is, therefore, a window into a broad expanse of mathematics--including class field theory, arithmetic algebraic geometry, and group representations--in which the concidence of L functions relates analysis and algebra in the most fundamental ways. Developing, with many examples, the elementary theory of elliptic curves, the book goes on to the subject of modular forms and the first connections with elliptic curves. The last two chapters concern Eichler-Shimura theory, which establishes a much deeper relationship between the two subjects. No other book in print treats the basic theory of elliptic curves with only undergraduate mathematics, and no other explains Eichler-Shimura theory in such an accessible manner.




An Introduction to Extremal Kahler Metrics


Book Description

A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.