One-Dimensional Dynamics


Book Description

One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).




Dynamics of One-Dimensional Maps


Book Description

maps whose topological entropy is equal to zero (i.e., maps that have only cyeles of pe 2 riods 1,2,2 , ... ) are studied in detail and elassified. Various topological aspects of the dynamics of unimodal maps are studied in Chap ter 5. We analyze the distinctive features of the limiting behavior of trajectories of smooth maps. In particular, for some elasses of smooth maps, we establish theorems on the number of sinks and study the problem of existence of wandering intervals. In Chapter 6, for a broad elass of maps, we prove that almost all points (with respect to the Lebesgue measure) are attracted by the same sink. Our attention is mainly focused on the problem of existence of an invariant measure absolutely continuous with respect to the Lebesgue measure. We also study the problem of Lyapunov stability of dynamical systems and determine the measures of repelling and attracting invariant sets. The problem of stability of separate trajectories under perturbations of maps and the problem of structural stability of dynamical systems as a whole are discussed in Chap ter 7. In Chapter 8, we study one-parameter families of maps. We analyze bifurcations of periodic trajectories and properties of the set of bifurcation values of the parameter, in eluding universal properties such as Feigenbaum universality.




Mathematical Tools for One-Dimensional Dynamics


Book Description

Originating with the pioneering works of P. Fatou and G. Julia, the subject of complex dynamics has seen great advances in recent years. Complex dynamical systems often exhibit rich, chaotic behavior, which yields attractive computer generated pictures, for example the Mandelbrot and Julia sets, which have done much to renew interest in the subject. This self-contained book discusses the major mathematical tools necessary for the study of complex dynamics at an advanced level. Complete proofs of some of the major tools are presented; some, such as the Bers-Royden theorem on holomorphic motions, appear for the very first time in book format. An appendix considers Riemann surfaces and Teichmüller theory. Detailing the very latest research, the book will appeal to graduate students and researchers working in dynamical systems and related fields. Carefully chosen exercises aid understanding and provide a glimpse of further developments in real and complex one-dimensional dynamics.




Topics from One-Dimensional Dynamics


Book Description

One-dimensional dynamics owns many deep results and avenues of active mathematical research. Numerous inroads to this research exist for the advanced undergraduate or beginning graduate student. This book provides glimpses into one-dimensional dynamics with the hope that the results presented illuminate the beauty and excitement of the field. Much of this material is covered nowhere else in textbook format, some are mini new research topics in themselves, and novel connections are drawn with other research areas both inside and outside the text. The material presented here is not meant to be approached in a linear fashion. Readers are encouraged to pick and choose favourite topics. Anyone with an interest in dynamics, novice or expert alike, will find much of interest within.




One-Dimensional Dynamical Systems


Book Description

For almost every phenomenon in Physics, Chemistry, Biology, Medicine, Economics, and other sciences one can make a mathematical model that can be regarded as a dynamical system. One-Dimensional Dynamical Systems: An Example-Led Approach seeks to deep-dive into α standard maps as an example-driven way of explaining the modern theory of the subject in a way that will be engaging for students. Features Example-driven approach Suitable as supplementary reading for a graduate or advanced undergraduate course in dynamical systems.




Dynamics of One-Dimensional Quantum Systems


Book Description

A concise and accessible account of the dynamical properties of one-dimensional quantum systems, for graduate students and new researchers.




Combinatorial Dynamics And Entropy In Dimension One (2nd Edition)


Book Description

This book introduces the reader to the two main directions of one-dimensional dynamics. The first has its roots in the Sharkovskii theorem, which describes the possible sets of periods of all cycles (periodic orbits) of a continuous map of an interval into itself. The whole theory, which was developed based on this theorem, deals mainly with combinatorial objects, permutations, graphs, etc.; it is called combinatorial dynamics. The second direction has its main objective in measuring the complexity of a system, or the degree of “chaos” present in it; for that the topological entropy is used. The book analyzes the combinatorial dynamics and topological entropy for the continuous maps of either an interval or the circle into itself.




Non-equilibrium Dynamics of One-Dimensional Bose Gases


Book Description

This work presents a series of experiments with ultracold one-dimensional Bose gases, which establish said gases as an ideal model system for exploring a wide range of non-equilibrium phenomena. With the help of newly developed tools, like full distributions functions and phase correlation functions, the book reveals the emergence of thermal-like transient states, the light-cone-like emergence of thermal correlations and the observation of generalized thermodynamic ensembles. This points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution, and lays the groundwork for a universal framework of non-equilibrium physics. The thesis investigates a central question that is highly contested in quantum physics: how and to which extent does an isolated quantum many-body system relax? This question arises in many diverse areas of physics, and many of the open problems appear at vastly different energy, time and length scales, ranging from high-energy physics and cosmology to condensed matter and quantum information. A key challenge in attempting to answer this question is the scarcity of quantum many-body systems that are both well isolated from the environment and accessible for experimental study.




New Trends in One-Dimensional Dynamics


Book Description

This volume presents the proceedings of the meeting New Trends in One-Dimensional Dynamics, which celebrated the 70th birthday of Welington de Melo and was held at the IMPA, Rio de Janeiro, in November 2016. Highlighting the latest results in one-dimensional dynamics and its applications, the contributions gathered here also celebrate the highly successful meeting, which brought together experts in the field, including many of Welington de Melo’s co-authors and former doctoral students. Sadly, Welington de Melo passed away shortly after the conference, so that the present volume became more a tribute to him. His role in the development of mathematics was undoubtedly an important one, especially in the area of low-level dynamics, and his legacy includes, in addition to many articles with fundamental contributions, books that are required reading for all newcomers to the field.




Iterated Maps on the Interval as Dynamical Systems


Book Description

Iterations of continuous maps of an interval to itself serve as the simplest examples of models for dynamical systems. These models present an interesting mathematical structure going far beyond the simple equilibrium solutions one might expect. If, in addition, the dynamical system depends on an experimentally controllable parameter, there is a corresponding mathematical structure revealing a great deal about interrelations between the behavior for different parameter values. This work explains some of the early results of this theory to mathematicians and theoretical physicists, with the additional hope of stimulating experimentalists to look for more of these general phenomena of beautiful regularity, which oftentimes seem to appear near the much less understood chaotic systems. Although continuous maps of an interval to itself seem to have been first introduced to model biological systems, they can be found as models in most natural sciences as well as economics. Iterated Maps on the Interval as Dynamical Systems is a classic reference used widely by researchers and graduate students in mathematics and physics, opening up some new perspectives on the study of dynamical systems .