Online Portfolio Selection


Book Description

With the aim to sequentially determine optimal allocations across a set of assets, Online Portfolio Selection (OLPS) has significantly reshaped the financial investment landscape. Online Portfolio Selection: Principles and Algorithms supplies a comprehensive survey of existing OLPS principles and presents a collection of innovative strategies that leverage machine learning techniques for financial investment. The book presents four new algorithms based on machine learning techniques that were designed by the authors, as well as a new back-test system they developed for evaluating trading strategy effectiveness. The book uses simulations with real market data to illustrate the trading strategies in action and to provide readers with the confidence to deploy the strategies themselves. The book is presented in five sections that: Introduce OLPS and formulate OLPS as a sequential decision task Present key OLPS principles, including benchmarks, follow the winner, follow the loser, pattern matching, and meta-learning Detail four innovative OLPS algorithms based on cutting-edge machine learning techniques Provide a toolbox for evaluating the OLPS algorithms and present empirical studies comparing the proposed algorithms with the state of the art Investigate possible future directions Complete with a back-test system that uses historical data to evaluate the performance of trading strategies, as well as MATLAB® code for the back-test systems, this book is an ideal resource for graduate students in finance, computer science, and statistics. It is also suitable for researchers and engineers interested in computational investment. Readers are encouraged to visit the authors’ website for updates: http://olps.stevenhoi.org.




Online Portfolio Selection


Book Description

With the aim to sequentially determine optimal allocations across a set of assets, Online Portfolio Selection (OLPS) has significantly reshaped the financial investment landscape. Online Portfolio Selection: Principles and Algorithms supplies a comprehensive survey of existing OLPS principles and presents a collection of innovative strategies that leverage machine learning techniques for financial investment. The book presents four new algorithms based on machine learning techniques that were designed by the authors, as well as a new back-test system they developed for evaluating trading strategy effectiveness. The book uses simulations with real market data to illustrate the trading strategies in action and to provide readers with the confidence to deploy the strategies themselves. The book is presented in five sections that: Introduce OLPS and formulate OLPS as a sequential decision task Present key OLPS principles, including benchmarks, follow the winner, follow the loser, pattern matching, and meta-learning Detail four innovative OLPS algorithms based on cutting-edge machine learning techniques Provide a toolbox for evaluating the OLPS algorithms and present empirical studies comparing the proposed algorithms with the state of the art Investigate possible future directions Complete with a back-test system that uses historical data to evaluate the performance of trading strategies, as well as MATLAB® code for the back-test systems, this book is an ideal resource for graduate students in finance, computer science, and statistics. It is also suitable for researchers and engineers interested in computational investment. Readers are encouraged to visit the authors' website for updates: http://olps.stevenhoi.org.




Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling


Book Description

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.




Portfolio Selection


Book Description

Embracing finance, economics, operations research, and computers, this book applies modern techniques of analysis and computation to find combinations of securities that best meet the needs of private or institutional investors.




The Kelly Capital Growth Investment Criterion


Book Description

This volume provides the definitive treatment of fortune's formula or the Kelly capital growth criterion as it is often called. The strategy is to maximize long run wealth of the investor by maximizing the period by period expected utility of wealth with a logarithmic utility function. Mathematical theorems show that only the log utility function maximizes asymptotic long run wealth and minimizes the expected time to arbitrary large goals. In general, the strategy is risky in the short term but as the number of bets increase, the Kelly bettor's wealth tends to be much larger than those with essentially different strategies. So most of the time, the Kelly bettor will have much more wealth than these other bettors but the Kelly strategy can lead to considerable losses a small percent of the time. There are ways to reduce this risk at the cost of lower expected final wealth using fractional Kelly strategies that blend the Kelly suggested wager with cash. The various classic reprinted papers and the new ones written specifically for this volume cover various aspects of the theory and practice of dynamic investing. Good and bad properties are discussed, as are fixed-mix and volatility induced growth strategies. The relationships with utility theory and the use of these ideas by great investors are featured.




Applying Particle Swarm Optimization


Book Description

This book explains the theoretical structure of particle swarm optimization (PSO) and focuses on the application of PSO to portfolio optimization problems. The general goal of portfolio optimization is to find a solution that provides the highest expected return at each level of portfolio risk. According to H. Markowitz’s portfolio selection theory, as new assets are added to an investment portfolio, the total risk of the portfolio’s decreases depending on the correlations of asset returns, while the expected return on the portfolio represents the weighted average of the expected returns for each asset. The book explains PSO in detail and demonstrates how to implement Markowitz’s portfolio optimization approach using PSO. In addition, it expands on the Markowitz model and seeks to improve the solution-finding process with the aid of various algorithms. In short, the book provides researchers, teachers, engineers, managers and practitioners with many tools they need to apply the PSO technique to portfolio optimization.




Online Algorithms for the Portfolio Selection Problem


Book Description

Robert Dochow mathematically derives a simplified classification structure of selected types of the portfolio selection problem. He proposes two new competitive online algorithms with risk management, which he evaluates analytically. The author empirically evaluates online algorithms by a comprehensive statistical analysis. Concrete results are that follow-the-loser algorithms show the most promising performance when the objective is the maximization of return on investment and risk-adjusted performance. In addition, when the objective is the minimization of risk, the two new algorithms with risk management show excellent performance. A prototype of a software tool for automated evaluation of algorithms for portfolio selection is given.




Handbook of Research on Applied AI for International Business and Marketing Applications


Book Description

Artificial intelligence (AI) describes machines/computers that mimic cognitive functions that humans associate with other human minds, such as learning and problem solving. As businesses have evolved to include more automation of processes, it has become more vital to understand AI and its various applications. Additionally, it is important for workers in the marketing industry to understand how to coincide with and utilize these techniques to enhance and make their work more efficient. The Handbook of Research on Applied AI for International Business and Marketing Applications is a critical scholarly publication that provides comprehensive research on artificial intelligence applications within the context of international business. Highlighting a wide range of topics such as diversification, risk management, and artificial intelligence, this book is ideal for marketers, business professionals, academicians, practitioners, researchers, and students.




Alternative Decision-Making Models for Financial Portfolio Management: Emerging Research and Opportunities


Book Description

Economics is an integral aspect to every successful society, yet basic financial practices have gone unchanged for decades. Analyzing unconventional finance methods can provide new ways to ensure personal financial futures on an individual level, as well as boosting international economies. Alternative Decision-Making Models for Financial Portfolio Management: Emerging Research and Opportunities is an essential reference source that discusses methods and techniques that make financial administration more efficient for professionals in economic fields. Featuring relevant topics such as mean-variance portfolio theory, decision tree analysis, risk protection strategies, and asset-liability management, this publication is ideal for academicians, students, economists, and researchers that would like to stay current on new and innovative methods to transform the financial realm.




Machine Learning for Financial Engineering


Book Description

Preface v 1 On the History of the Growth-Optimal Portfolio M.M. Christensen 1 2 Empirical Log-Optimal Portfolio Selections: A Survey L. Györfi Gy. Ottucsáak A. Urbán 81 3 Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Györfi H. Walk 119 4 Growth-Optimal Portfoho Selection with Short Selling and Leverage M. Horváth A. Urbán 153 5 Nonparametric Sequential Prediction of Stationary Time Series L. Györfi Gy. Ottucsák 179 6 Empirical Pricing American Put Options L. Györfi A. Telcs 227 Index 249.