Operating Principles of Semiconductor Devices


Book Description

Electronic components made out of semiconductors surround us in our daily lives. Semiconductor devices are used in computers, hand-held devices, and cell phones. They are also used to control the power in refrigerators, ovens, and dish-washers. They are used extensively in the cars we drive, the trains we ride in, and the airplanes we fly in. Semiconductor devices are also the principle component of solar panels on our homes. In short, semiconductor devices are present in most anything that pertains to energy, communications, or information. This book is an introduction to the operating principles of these semiconductor devices. This book is appropriate for undergraduate students in engineering.




Principles of Semiconductor Devices


Book Description

"This dynamic text applies physics concepts and equations to practical, real-world applications of semiconductor device theory"-- Provided by publisher.




Semiconductor Devices : Basic Principles


Book Description

Market_Desc: · Electrical Engineers Special Features: · Over 150 solved examples that clarify concepts are integrated throughout the text. · End-of-chapter summary tables and hundreds of figures are included to reinforce the intricacies of modern semiconductor devices· Coverage of device optimization issues shows the reader how in each device one has to trade one performance against another About The Book: This introductory text presents a well-balanced coverage of semiconductor physics and device operation and shows how devices are optimized for applications. The text begins with an exploration of the basic physical processes upon which all semiconductor devices are based. Next, the author focuses on the operation of the important semiconductor devices along with issues relating to the optimization of device performance.




Optical Semiconductor Devices


Book Description

Eine Einführung in das Gebiet der optoelektronischen pn-Halbleiterbauelemente aus den Blickwinkeln der Materialeigenschaften, der Funktionsprinzipien, der Herstellung und Verpackung, der Zuverlässigkeit und der Anwendung. Das Buch ist für Anfänger gedacht, daher sind die Erläuterungen in geeigneter Weise vereinfacht und theoretische Grundlagen wurden zugunsten anwendungsspezifischer Aspekte zum Teil übersprungen. (12/98)




Semiconductor Physics and Devices


Book Description

This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.




Nitride Semiconductor Devices


Book Description

This is the first book to be published on physical principles, mathematical models, and practical simulation of GaN-based devices. Gallium nitride and its related compounds enable the fabrication of highly efficient light-emitting diodes and lasers for a broad spectrum of wavelengths, ranging from red through yellow and green to blue and ultraviolet. Since the breakthrough demonstration of blue laser diodes by Shuji Nakamura in 1995, this field has experienced tremendous growth worldwide. Various applications can be seen in our everyday life, from green traffic lights to full-color outdoor displays to high-definition DVD players. In recent years, nitride device modeling and simulation has gained importance and advanced software tools are emerging. Similar developments occurred in the past with other semiconductors such as silicon, where computer simulation is now an integral part of device development and fabrication. This book presents a review of modern device concepts and models, written by leading researchers in the field. It is intended for scientists and device engineers who are interested in employing computer simulation for nitride device design and analysis.




Semiconductor Devices, 2nd Edition


Book Description

Since its inception, the Tutorial Guides in Electronic Engineering series has met with great success among both instructors and students. Designed for first and second year undergraduate courses, each text provides a concise list of objectives at the beginning of every chapter, key definitions and formulas highlighted in margin notes, and references to other texts in the series. Semiconductor Devices begins with a review of the necessary basic background in semiconductor materials and what semiconductor devices are expected to do, that is, their typical applications. Then the author explains, in order of increasing complexity, the main semiconductor devices in use today, beginning with p-n junctions in their various forms and ending with integrated circuits. In doing so, he presents both the "band" model and the "bond" model of semiconductors, since neither one on its own can account for all device behavior. The final chapter introduces more recently developed technologies, particularly the use of compound instead of silicon semiconductors, and the improvement in device performance these materials make possible. True to the Tutorial Guides in Electronic Engineering series standards, Semiconductor Devices offers a clear presentation, a multitude of illustrations, and fully worked examples supported by end-of-chapter exercises and suggestions for further reading. This book provides an ideal introduction to the fundamental theoretical principles underlying the operation of semiconductor devices and to their simple and effective mathematical modelling.




Semiconductor Devices


Book Description

Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.




Semiconductor Materials


Book Description

The technological progress is closely related to the developments of various materials and tools made of those materials. Even the different ages have been defined in relation to the materials used. Some of the major attributes of the present-day age (i.e., the electronic materials’ age) are such common tools as computers and fiber-optic telecommunication systems, in which semiconductor materials provide vital components for various mic- electronic and optoelectronic devices in applications such as computing, memory storage, and communication. The field of semiconductors encompasses a variety of disciplines. This book is not intended to provide a comprehensive description of a wide range of semiconductor properties or of a continually increasing number of the semiconductor device applications. Rather, the main purpose of this book is to provide an introductory perspective on the basic principles of semiconductor materials and their applications that are described in a relatively concise format in a single volume. Thus, this book should especially be suitable as an introductory text for a single course on semiconductor materials that may be taken by both undergraduate and graduate engineering students. This book should also be useful, as a concise reference on semiconductor materials, for researchers working in a wide variety of fields in physical and engineering sciences.