Handbook of Research on Systems Biology Applications in Medicine


Book Description

"This book highlights the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatics, molecular, and biochemical, to address fundamental questions in complex diseases like cancer diabetes but also in ageing"--Provided by publisher.




Modeling Biological Systems:


Book Description

I Principles 1 1 Models of Systems 3 1. 1 Systems. Models. and Modeling . . . . . . . . . . . . . . . . . . . . 3 1. 2 Uses of Scientific Models . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3 Example: Island Biogeography . . . . . . . . . . . . . . . . . . . . . 6 1. 4 Classifications of Models . . . . . . . . . . . . . . . . . . . . . . . . 10 1. 5 Constraints on Model Structure . . . . . . . . . . . . . . . . . . . . . 12 1. 6 Some Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. 7 Misuses of Models: The Dark Side . . . . . . . . . . . . . . . . . . . 13 1. 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The Modeling Process 17 2. 1 Models Are Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. 2 Two Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . 18 2. 3 An Example: Population Doubling Time . . . . . . . . . . . . . . . . 24 2. 4 Model Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2. 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Qualitative Model Formulation 32 3. 1 How to Eat an Elephant . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. 2 Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3. 3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. 4 Errors in Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . 44 3. 5 Advantages and Disadvantages of Forrester Diagrams . . . . . . . . . 44 3. 6 Principles of Qualitative Formulation . . . . . . . . . . . . . . . . . . 45 3. 7 Model Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 8 Other Modeling Problems . . . . . . . . . . . . . . . . . . . . . . . . 49 viii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 9 Exercises 53 4 Quantitative Model Formulation: I 4. 1 From Qualitative to Quantitative . . . . . . . . . . . . . . . . . Finite Difference Equations and Differential Equations 4. 2 . . . . . . . . . . . . . . . . 4. 3 Biological Feedback in Quantitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 4 Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 5 Exercises 5 Quantitative Model Formulation: I1 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 1 Physical Processes 81 . . . . . . . . . . . . . . . 5. 2 Using the Toolbox of Biological Processes 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 3 Useful Functions 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 4 Examples 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 5 Exercises 104 6 Numerical Techniques 107 . . . . . . . . . . . . . . . . . . . . . . . 6. 1 Mistakes Computers Make 107 . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 2 Numerical Integration 110 . . . . . . . . . . . . . . . . 6. 3 Numerical Instability and Stiff Equations 115 . . . . . . . . . . . . . .




Operations Research


Book Description

Students with diverse backgrounds will face a multitude of decisions in a variety of engineering, scientific, industrial, and financial settings. They will need to know how to identify problems that the methods of operations research (OR) can solve, how to structure the problems into standard mathematical models, and finally how to apply or develop computational tools to solve the problems. Perfect for any one-semester course in OR, Operations Research: A Practical Introduction answers all of these needs. In addition to providing a practical introduction and guide to using OR techniques, it includes a timely examination of innovative methods and practical issues related to the development and use of computer implementations. It provides a sound introduction to the mathematical models relevant to OR and illustrates the effective use of OR techniques with examples drawn from industrial, computing, engineering, and business applications Many students will take only one course in the techniques of Operations Research. Operations Research: A Practical Introduction offers them the greatest benefit from that course through a broad survey of the techniques and tools available for quantitative decision making. It will also encourage other students to pursue more advanced studies and provides you a concise, well-structured, vehicle for delivering the best possible overview of the discipline.




Proceedings


Book Description




Dynamical Modeling of Biological Systems


Book Description

This book introduces concepts and practical tools for dynamical mathematical modeling of biological systems. Dynamical models describe the behavior of a system over time as a result of internal feedback loops and external forcing, based on mathematically formulated dynamical laws, similarly to how Newton's laws describe the movement of celestial bodies. Dynamical models are increasingly popular in biology, as they tend to be more powerful than static regression models. This book is meant for undergraduate and graduate students in physics, applied mathematics and data science with an interest in biology, as well as students in biology with a strong interest in mathematical methods. The book covers deterministic models (for example differential equations), stochastic models (for example Markov chains and autoregressive models) and model-independent aspects of time series analysis. Plenty of examples and exercises are included, often taken or inspired from the scientific literature, and covering a broad range of topics such as neuroscience, cell biology, genetics, evolution, ecology, microbiology, physiology, epidemiology and conservation. The book delivers generic modeling techniques used across a wide range of situations in biology, and hence readers from other scientific disciplines will find that much of the material is also applicable in their own field. Proofs of most mathematical statements are included for the interested reader, but are not essential for a practical understanding of the material. The book introduces the popular scientific programming language MATLAB as a tool for simulating models, fitting models to data, and visualizing data and model predictions. The material taught is current as of MATLAB version 2022b. The material is taught in a sufficiently general way that also permits the use of alternative programming languages.




A First Course in Systems Biology


Book Description

A First Course in Systems Biology is a textbook designed for advanced undergraduate and graduate students. Its main focus is the development of computational models and their applications to diverse biological systems. Because the biological sciences have become so complex that no individual can acquire complete knowledge in any given area of specialization, the education of future systems biologists must instead develop a student's ability to retrieve, reformat, merge, and interpret complex biological information. This book provides the reader with the background and mastery of methods to execute standard systems biology tasks, understand the modern literature, and launch into specialized courses or projects that address biological questions using theoretical and computational means. The format is a combination of instructional text and references to primary literature, complemented by sets of small-scale exercises that enable hands-on experience, and larger-scale, often open-ended questions for further reflection.




Operations Research Proceedings 2005


Book Description

This volume contains a selection of 128 papers presented in lectures during the international scientific symposium "Operations Research 2005" (OR 2005) held at the University of Bremen, September 7-9, 2005. This international conference took place under the auspices of the German Operations Research Society (GOR). The symposium had about 600 participants from countries all over the world. It attracted academics and practitioners working in various fields of Operations Research and provided them with the most recent advances in Operations Research as well as related areas in Economics, Mathematics, and Computer Science including the special interest streams Logistics and New Maritime Businesses. The program consisted of 3 plenary and 15 semi-plenary talks and about 400 contributed presentations selected by the program committee to be presented in 20 sections.




Operations Research: Introduction To Models And Methods


Book Description

This attractive textbook with its easy-to-follow presentation provides a down-to-earth introduction to operations research for students in a wide range of fields such as engineering, business analytics, mathematics and statistics, computer science, and econometrics. It is the result of many years of teaching and collective feedback from students.The book covers the basic models in both deterministic and stochastic operations research and is a springboard to more specialized texts, either practical or theoretical. The emphasis is on useful models and interpreting the solutions in the context of concrete applications.The text is divided into several parts. The first three chapters deal exclusively with deterministic models, including linear programming with sensitivity analysis, integer programming and heuristics, and network analysis. The next three chapters primarily cover basic stochastic models and techniques, including decision trees, dynamic programming, optimal stopping, production planning, and inventory control. The final five chapters contain more advanced material, such as discrete-time and continuous-time Markov chains, Markov decision processes, queueing models, and discrete-event simulation.Each chapter contains numerous exercises, and a large selection of exercises includes solutions.




Modeling Life


Book Description

This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?




Operations Research


Book Description

Operations Research: A Practical Introduction is just that: a hands-on approach to the field of operations research (OR) and a useful guide for using OR techniques in scientific decision making, design, analysis and management. The text accomplishes two goals. First, it provides readers with an introduction to standard mathematical models and algorithms. Second, it is a thorough examination of practical issues relevant to the development and use of computational methods for problem solving. Highlights: All chapters contain up-to-date topics and summaries A succinct presentation to fit a one-term course Each chapter has references, readings, and list of key terms Includes illustrative and current applications New exercises are added throughout the text Software tools have been updated with the newest and most popular software Many students of various disciplines such as mathematics, economics, industrial engineering and computer science often take one course in operations research. This book is written to provide a succinct and efficient introduction to the subject for these students, while offering a sound and fundamental preparation for more advanced courses in linear and nonlinear optimization, and many stochastic models and analyses. It provides relevant analytical tools for this varied audience and will also serve professionals, corporate managers, and technical consultants.