Operator B


Book Description

Operator "A" is dead. In 1989, the United States Military recovered a crashed vehicle of extraterrestrial origin. Ten years later, the vehicle is operational again. Willard Farrington, the best pilot in the world, has just committed suicide. Why? Air Force General Jack Wentz will find out soon enough, but for now he has willingly stepped into Farrington's coveted boots. What Wentz will be offered is any test pilot's dream beyond all imagination. And Wentz's dream comes true. But there's a catch... Within the secret warrens of the Pentagon and amongst military cells unknown even to the President and the Congress, Wentz has just been designated Operator "B". With his mind and his body, he will assume an unfathomable sacrifice. He will assume the role of the best pilot on the surface of the Earth. Wentz will give up everything: his wife, his child, and the kind of life most people yearn for. He cuts it all loose... for this final mission and ultimate gesture of duty. Only when it's too late does General Wentz realize the full price he must pay... to become Operator "B".




A Course in Operator Theory


Book Description

Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on $C^*$-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of $C^*$-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.




Operator Theory and Complex Analysis


Book Description

This volume presents a set of papers based on the proceedings of the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The workshop focused on the fusion or integration of sensor information to achieve the optimum interpretation of a scene. The papers cover a broad range of topics, including principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multisensor fusion, and applications of multisensor fusion. The authors have documented their own research and, in so doing,have presented the state of the art in the field. Each author is a recognized leader in his or her area in the academic, governmental, or industrial research community. Several contributors present novel points of view on the integration of information. The book gives a representative picture of current progress in multisensor fusion for computer vision among the leading research groups in Europe and North America.




Polynomial Operator Equations in Abstract Spaces and Applications


Book Description

Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include: Special cases of nonlinear operator equations Solution of polynomial operator equations of positive integer degree n Results on global existence theorems not related with contractions Galois theory Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas Results on the various Chandrasekhar equations Weierstrass theorem Matrix representations Lagrange and Hermite interpolation Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies Advanced numerical analysis Numerical functional analysis Functional analysis Approximation theory Integral and differential equations Tables include Numerical solutions for Chandrasekhar's equation I to VI Error bounds comparison Accelerations schemes I and II for Newton's method Newton's method Secant method The self-contained text thoroughly details results, adds exercises for each chapter, and includes several applications for the solution of integral and differential equations throughout every chapter.




Problems in Operator Theory


Book Description

This book contains complete solutions to the more than six hundred exercises in the authors' book: Invitation to operator theory--foreword.










The Theory of H(b) Spaces: Volume 2


Book Description

An H(b) space is defined as a collection of analytic functions that are in the image of an operator. The theory of H(b) spaces bridges two classical subjects, complex analysis and operator theory, which makes it both appealing and demanding. Volume 1 of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators and Clark measures. Volume 2 focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.




Toward General Theory Of Differential-operator And Kinetic Models


Book Description

This volume provides a comprehensive introduction to the modern theory of differential-operator and kinetic models including Vlasov-Maxwell, Fredholm, Lyapunov-Schmidt branching equations to name a few. This book will bridge the gap in the considerable body of existing academic literature on the analytical methods used in studies of complex behavior of differential-operator equations and kinetic models. This monograph will be of interest to mathematicians, physicists and engineers interested in the theory of such non-standard systems.




Operator's Manual


Book Description