Numerical Simulation of Optical Wave Propagation with Examples in MATLAB


Book Description

Numerical Simulation of Optical Wave Propagation is solely dedicated to wave-optics simulations. The book discusses digital Fourier transforms (FT), FT-based operations, multiple methods of wave-optics simulations, sampling requirements, and simulations in atmospheric turbulence.




Laser Beam Propagation in the Atmosphere


Book Description

With contributions by numerous experts







Laser Beam Propagation Through Random Media


Book Description

Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems.




Laser Beam Scintillation with Applications


Book Description

Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.




Optical Channels


Book Description

When we were first approached by Dr. Lucky to write this book we were very enthusiastic about the prospect, since we had contemplated a similar project for quite some time. The difficulty lay in how best to digest the vast amount of data on optical propagation, reduce it to a book of manageable size, and simultaneously form the transition from the physics of propagation to the engineering of optical channels. This is the intent of Optical Channels. In accomplishing our goal it was necessary to condense the material on optical propagation and, in so doing, we have left a large amount to be handled via references. We have tried to make these decisions in a consistent manner so that the book will be uniform in its treatment of this topic. We identify four channels for consideration: the free-space channel, which: is characteristic of a tranquil atmosphere or a space-to-space link; the turbulent channel, which is characteristic of the atmospheric channel; the scatter channel in two forms, clouds and water; and the fiber optic channel. For each of these channels we have tried to reduce the applicable propagation theory to a level that can be used for engineering design. This has been done by example, but here again decisions had to be made on which examples to present. We have not tried to present any material on optical components and consequently other references on engineering would be necessary to supplement this book.




Field Guide to Atmospheric Optics


Book Description

The material in this Field Guide is a condensed version of similar material found in two textbooks: Laser Beam Propagation through Random Media (SPIE Vol. PM53) and Laser Beam Scintillation with Applications (SPIE Vol. PM99). Topics chosen for this concise presentation include a review of classical Kolmogorov turbulence theory, Gaussian-beam waves in free space, and atmospheric effects on a propagating optical wave. These atmospheric effects have great importance in a variety of applications like imaging, free space optical communications, laser radar, and remote sensing. This Guide presents tractable mathematical models from which the practitioner can readily determine beam spreading, beam wander, spatial coherence radius (Fried's parameter), angle of arrival fluctuations, scintillation, aperture averaging effects, fade probabilities, bit error-rates, and enhanced backscatter effects, among others.




The Monte Carlo Methods in Atmospheric Optics


Book Description

This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo tech nique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathemati cal methods of simulation and to the interpretation of optical observations. A series of general method using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.




Free-Space Laser Communications


Book Description

This is a comprehensive tutorial on the emerging technology of free-space laser communications (FSLC). The book offers an all-inclusive source of information on the basics of FSLC, and a review of state-of-the-art technologies. Coverage includes atmospheric effects for laser propagation and FSLC systems performance and design. Free-Space Laser Communications is a valuable resource for engineers, scientists and students interested in laser communication systems designed for the atmospheric optical channel.




Free Space Optical Communication


Book Description

This book provides an in-depth understanding of free space optical (FSO) communication with a particular emphasis on optical beam propagation through atmospheric turbulence. The book is structured in such a way that it provides a basic framework for the beginners and also gives a concise description from a designer’s perspective. The book provides an exposure to FSO technology, fundamental limitations, design methodologies, system trade-offs, acquisition, tracking and pointing (ATP) techniques and link-feasibility analysis. The contents of this book will be of interest to professionals and researchers alike. The book may also be used as a textbook for engineering coursework and professional training.