Optical properties of Inhomogeneous materials


Book Description

Optical Properties of Inhomogeneous Materials: Applications to Geology, Astronomy, Chemistry, and Engineering reviews the results of studies of the optical properties of inhomogeneous materials and provides a guide for solving a number of related scientific and engineering problems based on these studies. Some of these studies focus on the surface and atmosphere of Mars, the earth's atmosphere, and the interstellar medium. The tools necessary for modeling the radiation scattered from diffuse surfaces are also described. Comprised of 12 chapters, this book begins with a brief introduction to the formalism for optical properties of inhomogeneous materials, followed by a description of surface scattering models in order of increasing complexity and a discussion of atmospheric scattering by particulates. The experimental approaches for the determination of the refractive and absorptive components of the optical complex indices of refraction are then considered. Subsequent chapters present actual diffuse surface modeling examples and discuss applications such as remote sensing of planetary surfaces; study of the interstellar medium; research on thermal energy collectors; analysis of coatings and paints; and remote mineral exploration. This monograph will be of interest to scientists, students, and researchers in different disciplines such as geology, optical mineralogy, astronomy, chemistry, soil mechanics, mechanical engineering, and optics.




Optical Properties of Materials and Their Applications


Book Description

Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.




Springer Handbook of Lasers and Optics


Book Description

This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.




NBS Special Publication


Book Description




Optical Properties of Semiconductor Nanocrystals


Book Description

Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.




Optical Properties of Nanoparticle Systems


Book Description

Filling the gap for a description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter, this is the most up-to-date reference on the optical physics of nanoparticle systems. The author, an expert in the field with both academic and industrial experience, concentrates on the linear optical properties, elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter.




Optical Effects in Solids


Book Description

An overview of the optical effects in solids, this book addresses the physics of materials and their response to electromagnatic radiation--back cover.







Publications


Book Description