Optical Tomography and Spectroscopy of Tissue VII


Book Description

Theory/Algorithm/Modeling; Instrumentation and Technology I; Fluorescence Imaging/Spectroscopy (algorithm/model/tomography); Fluorescence Imaging/Image Reconstruction (Experimental); Instrumentation and Technology II; Fluorescence Imaging Technology I; Fluorescence Imaging Technology II; Fluorescence Imaging Technology III; Network for Translational Research in Optical Imaging: Breast Cancer Diffuse Optical Imaging; Breast II - Instrumentation & New Analysis Method; Breast III - Clinical Study; Pre-Clinical/Animal; Instrumentation and Technology III; Clinical/Human Subject Studies.




Tissue Optics


Book Description

This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology.




Optical Tomography and Spectroscopy of Tissue VII


Book Description

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.




Handbook of Optical Biomedical Diagnostics


Book Description

This text begins by describing the basic principles and diagnostic applications of optical techniques based on detecting and processing the scattering, fluorescence, FT IR, and Raman spectroscopic signals from various tissues, with an emphasis on blood, epithelial tissues, and human skin. The second half of the volume discusses specific imaging technologies, such as Doppler, laser speckle, optical coherence tomography (OCT), and fluorescence and photoacoustic imaging.




Handbook of Tissue Optical Clearing


Book Description

Biomedical photonics is currently one of the fastest growing fields, connecting research in physics, optics, and electrical engineering coupled with medical and biological applications. It allows for the structural and functional analysis of tissues and cells with resolution and contrast unattainable by any other methods. However, the major challenges of many biophotonics techniques are associated with the need to enhance imaging resolution even further to the sub-cellular level as well as translate them for in vivo studies. The tissue optical clearing method uses immersion of tissues into optical clearing agents (OCAs) that reduces the scattering of tissue and makes tissue more transparent and this method has been successfully used ever since. This book is a self-contained introduction to tissue optical clearing, including the basic principles and in vitro biological applications, from in vitro to in vivo tissue optical clearing methods, and combination of tissue optical clearing and various optical imaging for diagnosis. The chapters cover a wide range of issues related to the field of tissue optical clearing: mechanisms of tissue optical clearing in vitro and in vivo; traditional and innovative optical clearing agents; recent achievements in optical clearing of different tissues (including pathological tissues) and blood for optical imaging diagnosis and therapy. This book provides a comprehensive account of the latest research and possibilities of utilising optical clearing as an instrument for improving the diagnostic effectiveness of modern optical diagnostic methods. The book is addressed to biophysicist researchers, graduate students and postdocs of biomedical specialties, as well as biomedical engineers and physicians interested in the development and application of optical methods in medicine. Key features: The first collective reference to collate all known knowledge on this topic Edited by experts in the field with chapter contributions from subject area specialists Brings together the two main approaches in immersion optical clearing into one cohesive book







In Vivo Optical Imaging of Brain Function, Second Edition


Book Description

These are exciting times for the field of optical imaging of brain function. Rapid developments in theory and technology continue to considerably advance understanding of brain function. Reflecting changes in the field during the past five years, the second edition of In Vivo Optical Imaging of Brain Function describes state-of-the-art techniques and their applications for the growing field of functional imaging in the live brain using optical imaging techniques. New in the Second Edition: Voltage-sensitive dyes imaging in awake behaving animals Imaging based on genetically encoded probes Imaging of mitochondrial auto-fluorescence as a tool for cortical mapping Using pH-sensitive dyes for functional mapping Modulated imaging Calcium imaging of neuronal activity using 2-photon microscopy Fourier approach to optical imaging Fully updated chapters from the first edition Leading Authorities Explore the Latest Techniques Updated to reflect continuous development in this emerging research area, this new edition, as with the original, reaches across disciplines to review a variety of non-invasive optical techniques used to study activity in the living brain. Leading authorities from such diverse areas as biophysics, neuroscience, and cognitive science present a host of perspectives that range from a single neuron to large assemblies of millions of neurons, captured at various temporal and spatial resolutions. Introducing techniques that were not available just a few years ago, the authors describe the theory, setup, analytical methods, and examples that highlight the advantages of each particular method.




Biomedical Photonics Handbook


Book Description

A wide variety of biomedical photonic technologies have been developed recently for clinical monitoring of early disease states; molecular diagnostics and imaging of physiological parameters; molecular and genetic biomarkers; and detection of the presence of pathological organisms or biochemical species of clinical importance. However, available information on this rapidly growing field is fragmented among a variety of journals and specialized books. Now researchers and medical practitioners have an authoritative and comprehensive source for the latest research and applications in biomedical photonics. Over 150 leading scientists, engineers, and physicians discuss state-of-the-art instrumentation, methods, and protocols in the Biomedical Photonics Handbook. Editor-in-Chief Tuan Vo-Dinh and an advisory board of distinguished scientists and medical experts ensure that each of the 65 chapters represents the latest and most accurate information currently available.




Biomedical Photonics Handbook, 3 Volume Set


Book Description

This handbook presents the most recent technological advances and applications in the areas of biomedical photonics. This second edition contains introductory material and covers the state-of-the-art methods and instrumentation for biomedical photonic technologies. It integrates interdisciplinary research and development critically needed for scientists, engineers, manufacturers, teachers, students, and clinical providers to learn about the most recent advances and predicted trends in instrumentation and methods as well as clinical applications in important areas of biomedical photonics. Extensive references are provided to enhance further study.




Neurophotonics and Biomedical Spectroscopy


Book Description

Neurophotonics and Biomedical Spectroscopy addresses the novel state-of-the-art work in non-invasive optical spectroscopic methods that detect the onset and progression of diseases and other conditions, including pre-malignancy, cancer, Alzheimer's disease, tissue and cell response to therapeutic intervention, unintended injury and laser energy deposition. The book then highlights research in neurophotonics that investigates single and multi-photon excitation optical signatures of normal/diseased nerve tissues and in the brain, providing a better understanding of the underlying biochemical and structural changes of tissues and cells that are responsible for the observed spectroscopic signatures. Topics cover a wide array of well-established UV, visible, NIR and IR optical and spectroscopic techniques and novel approaches to diagnose tissue changes, including: label free in vivo and ex vivo fluorescence spectroscopy, Stoke shift spectroscopy, spectral imaging, Resonance Raman spectroscopy, multiphoton two Photon excitation, and more. - Provides an overview of the spectroscopic properties of tissue and tissue-light interaction, describing techniques to exploit these properties in imaging - Explores the potential and significance of molecule-specific imaging and its capacity to reveal vital new information on nanoscale structures - Offers a concise overview of different spectroscopic methods and their potential benefits for solving diagnostic and therapeutic problems