Laser Beam Propagation Through Random Media


Book Description

Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems.




Laser Beam Shaping


Book Description

Laser Beam Shaping: Theory and Techniques addresses the theory and practice of every important technique for lossless beam shaping. Complete with experimental results as well as guidance on when beam shaping is practical and when each technique is appropriate, the Second Edition is updated to reflect significant developments in the field. This authoritative text: Features new chapters on axicon light ring generation systems, laser-beam-splitting (fan-out) gratings, vortex beams, and microlens diffusers Describes the latest advances in beam profile measurement technology and laser beam shaping using diffractive diffusers Contains new material on wavelength dependence, channel integrators, geometrical optics, and optical software Laser Beam Shaping: Theory and Techniques, Second Edition not only provides a working understanding of the fundamentals, but also offers insight into the potential application of laser-beam-profile shaping in laser system design.




Topological Charge of Optical Vortices


Book Description

This book is devoted to the consideration of unusual laser beams – vortex or singular beams. It contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space, and that the topological charge is preserved. Topological Charge of Optical Vortices shows that the topological charge of an optical vortex is equal to the number of screw dislocations or the number of phase singularities in the beam cross-section. A single approach is used for the entire book: based on M. Berry’s formula. It is shown that phase singularities during beam propagation can be displaced to infinity at a speed greater than the speed of light. The uniqueness of the book is that the calculation of the topological charge for scalar light fields is extended to vector fields and is used to calculate the Poincare–Hopf singularity index for vector fields with inhomogeneous linear polarization with V-points and for the singularity index of vector fields with inhomogeneous elliptical polarization with C-points and C- lines. The book is written for opticians, and graduate students interested in an interesting section of optics – singular optics. It will also be of interest to scientists and researchers who are interested in modern optics. In order to understand the content of the book, it is enough to know paraxial optics (Fourier optics) and be able to calculate integrals.







Self-focusing: Past and Present


Book Description

Self-focusing has been an area of active scientific investigation for nearly 50 years. This book presents a comprehensive treatment of this topic and reviews both theoretical and experimental investigations of self-focusing. This book should be of interest to scientists and engineers working with lasers and their applications. From a practical point of view, self-focusing effects impose a limit on the power that can be transmitted through a material medium. Self-focusing also can reduce the threshold for the occurrence of other nonlinear optical processes. Self-focusing often leads to damage in optical materials and is a limiting factor in the design of high-power laser systems. But it can be harnessed for the design of useful devices such as optical power limiters and switches. At a formal level, the equations for self-focusing are equivalent to those describing Bose-Einstein condensates and certain aspects of plasma physics and hydrodynamics. There is thus a unifying theme between nonlinear optics and these other disciplines. One of the goals of this book is to connect the extensive early literature on self-focusing, filament-ation, self-trapping, and collapse with more recent studies aimed at issues such as self-focusing of fs pulses, white light generation, and the generation of filaments in air with lengths of more than 10 km. It also describes some modern advances in self-focusing theory including the influence of beam nonparaxiality on self-focusing collapse. This book consists of 24 chapters. Among them are three reprinted key landmark articles published earlier. It also contains the first publication of the 1964 paper that describes the first laboratory observation of self-focusing phenomena with photographic evidence.







Random Light Beams


Book Description

Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic paraxial beams and examines random scalar beams. It highlights electromagnetic random beams and matters relating to generation, propagation in free space and various media, and discusses transmission through optical systems. It includes applications that benefit from the use of random beams, as well as the interaction of beams with deterministic optical systems. • Includes detailed mathematical description of different model sources and beams • Explores a wide range of man-made and natural media for beam interaction • Contains more than 100 illustrations on beam behavior • Offers information that is based on the scientific results of the last several years • Points to general methods for dealing with random beams, on the basis of which the readers can do independent research It gives examples of light propagation through the human eye, laser resonators, and negative phase materials. It discusses in detail propagation of random beams in random media, the scattering of random beams from collections of scatterers and thin random layers as well as the possible uses for these beams in imaging, tomography, and smart illumination.







Progress in Optics


Book Description

Progress in Optics




A Guided Tour of Light Beams


Book Description

From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.