Optimal Control Theory with Economic Applications


Book Description

This book serves not only as an introduction, but also as an advanced text and reference source in the field of deterministic optimal control systems governed by ordinary differential equations. It also includes an introduction to the classical calculus of variations. An important feature of the book is the inclusion of a large number of examples, in which the theory is applied to a wide variety of economics problems. The presentation of simple models helps illuminate pertinent qualitative and analytic points, useful when confronted with a more complex reality. These models cover: economic growth in both open and closed economies, exploitation of (non-) renewable resources, pollution control, behaviour of firms, and differential games. A great emphasis on precision pervades the book, setting it apart from the bulk of literature in this area. The rigorous techniques presented should help the reader avoid errors which often recur in the application of control theory within economics.




Optimal Control Theory with Applications in Economics


Book Description

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.




Optimal Control Theory


Book Description

Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as a foundation for the book, which the authors have applied to business management problems developed from their research and classroom instruction. Sethi and Thompson have provided management science and economics communities with a thoroughly revised edition of their classic text on Optimal Control Theory. The new edition has been completely refined with careful attention to the text and graphic material presentation. Chapters cover a range of topics including finance, production and inventory problems, marketing problems, machine maintenance and replacement, problems of optimal consumption of natural resources, and applications of control theory to economics. The book contains new results that were not available when the first edition was published, as well as an expansion of the material on stochastic optimal control theory.




Optimal Control Theory and Static Optimization in Economics


Book Description

Optimal control theory is a technique being used increasingly by academic economists to study problems involving optimal decisions in a multi-period framework. This textbook is designed to make the difficult subject of optimal control theory easily accessible to economists while at the same time maintaining rigour. Economic intuitions are emphasized, and examples and problem sets covering a wide range of applications in economics are provided to assist in the learning process. Theorems are clearly stated and their proofs are carefully explained. The development of the text is gradual and fully integrated, beginning with simple formulations and progressing to advanced topics such as control parameters, jumps in state variables, and bounded state space. For greater economy and elegance, optimal control theory is introduced directly, without recourse to the calculus of variations. The connection with the latter and with dynamic programming is explained in a separate chapter. A second purpose of the book is to draw the parallel between optimal control theory and static optimization. Chapter 1 provides an extensive treatment of constrained and unconstrained maximization, with emphasis on economic insight and applications. Starting from basic concepts, it derives and explains important results, including the envelope theorem and the method of comparative statics. This chapter may be used for a course in static optimization. The book is largely self-contained. No previous knowledge of differential equations is required.




Foundations of Dynamic Economic Analysis


Book Description

Foundations of Dynamic Economic Analysis presents a modern and thorough exposition of the fundamental mathematical formalism used to study optimal control theory, i.e., continuous time dynamic economic processes, and to interpret dynamic economic behavior. The style of presentation, with its continual emphasis on the economic interpretation of mathematics and models, distinguishes it from several other excellent texts on the subject. This approach is aided dramatically by introducing the dynamic envelope theorem and the method of comparative dynamics early in the exposition. Accordingly, motivated and economically revealing proofs of the transversality conditions come about by use of the dynamic envelope theorem. Furthermore, such sequencing of the material naturally leads to the development of the primal-dual method of comparative dynamics and dynamic duality theory, two modern approaches used to tease out the empirical content of optimal control models. The stylistic approach ultimately draws attention to the empirical richness of optimal control theory, a feature missing in virtually all other textbooks of this type.




Optimal Control Theory for Applications


Book Description

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.




Optimal Control Theory


Book Description

This book is an introduction to the mathematical theory of optimal control of processes governed by ordinary differential eq- tions. It is intended for students and professionals in mathematics and in areas of application who want a broad, yet relatively deep, concise and coherent introduction to the subject and to its relati- ship with applications. In order to accommodate a range of mathema- cal interests and backgrounds among readers, the material is arranged so that the more advanced mathematical sections can be omitted wi- out loss of continuity. For readers primarily interested in appli- tions a recommended minimum course consists of Chapter I, the sections of Chapters II, III, and IV so recommended in the introductory sec tions of those chapters, and all of Chapter V. The introductory sec tion of each chapter should further guide the individual reader toward material that is of interest to him. A reader who has had a good course in advanced calculus should be able to understand the defini tions and statements of the theorems and should be able to follow a substantial portion of the mathematical development. The entire book can be read by someone familiar with the basic aspects of Lebesque integration and functional analysis. For the reader who wishes to find out more about applications we recommend references [2], [13], [33], [35], and [50], of the Bibliography at the end of the book.




Optimal Control of Nonlinear Processes


Book Description

Dynamic optimization is rocket science – and more. This volume teaches researchers and students alike to harness the modern theory of dynamic optimization to solve practical problems. These problems not only cover those in space flight, but also in emerging social applications such as the control of drugs, corruption, and terror. This volume is designed to be a lively introduction to the mathematics and a bridge to these hot topics in the economics of crime for current scholars. The authors celebrate Pontryagin’s Maximum Principle – that crowning intellectual achievement of human understanding. The rich theory explored here is complemented by numerical methods available through a companion web site.




Dynamic Optimization, Second Edition


Book Description

Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.




Optimal Control with Engineering Applications


Book Description

This book introduces a variety of problem statements in classical optimal control, in optimal estimation and filtering, and in optimal control problems with non-scalar-valued performance criteria. Many example problems are solved completely in the body of the text. All chapter-end exercises are sketched in the appendix. The theoretical part of the book is based on the calculus of variations, so the exposition is very transparent and requires little mathematical rigor.